Method Validation/Verification

CAP/CLIA regulated methods at Texas Department of State Health Services Laboratory

References

- * Westgard J. O.: Basic Method Validation, Westgard Quality Corporation
- * Sarewitz S.J.: CAP Accreditation Requirements for Validating Laboratory Tests, 7/9/13

Objectives

- Understand the validation process and perform appropriate validation/verification studies in accordance with CAP/CLIA requirements for both qualitative and quantitative methods including:
- * FDA-cleared methods
- Non-FDA cleared methods, Methods developed in-House and FDA-cleared methods modified by the laboratory
- * Instrument validation

- * Method Validations Required for:
 - * All New Tests
 - * Any Modification to Existing Procedures
- * Equipment Validation/Verifications Required for:
 - * All New Instruments
 - * Any Moved Instruments
- * All validation/verifications must be approved by the Laboratory Services Section Director <u>prior to use</u>.

Method Validation

- * Method Validation is about Error assessment!
- * Statistics don't tell you if the method is acceptable, they provide estimates of errors which allow you to judge the acceptability of a method.
- * Method performance is judged acceptable when observed error is less than or equal to the defined allowable error.

Preparation

- * Definitions
- * Reagents/Media/Standards
- * Equipment

Definitions

- * CAP/CLIA
- * Accuracy, Bias, Systemic Error
- Precision, Reproducibility, Random Error
- * Qualitative results
- * Quantitative results
- Reportable Range, Analytic
 Measurement Range (AMR)
- Reference Range, Normal values

- Analytic Sensitivity
- * Diagnostic Sensitivity
- * Analytic Specificity
- Diagnostic Specificity
- * Validation
- * Verification

Reagents/Media/Standards

- 1. Must have sufficient and appropriate quantities to perform the verification study
- 2. Use the same lot throughout the entire verification study (ideal)
- 3. Ensure that expiration dates are long enough to complete the validation/verification study

Communicate any needs or changes with the Media Prep Team and Consumer Micro QC related to the preparation of media and/or reagents

Equipment

- 1. <u>Instrument</u> to be used for method verification/validation
- 2. <u>Software</u> for Method Validation/Verification

Types of Validations

1. Qualitative Methods

- A. FDA cleared or approved methods
- B. Non-FDA cleared or approved tests

2. Quantitative Methods

- A. FDA cleared or approved methods
- B. Non-FDA cleared or approved tests

3. Instrument Validation

A. Method Performance Specifications (CAP Requirements)

Qualitative Method – FDA cleared

- 1. Accuracy
- 2. Precision
- 3. Reportable Range
- 4. Reference Range (Normal Values)
- 5. Acceptance criteria
 - A. 90% as compared to current/reference method
 - B. Matches or exceeds manufacturer's information

Qualitative Method – Non-FDA cleared

- 1. Accuracy
- 2. Precision
- 3. Reportable Range
 - A. Cut off Verification
- 4. Reference Range (Normal Values)

Qualitative Method – Non-FDA cleared

- 5. Sensitivity
 - A. Analytical Sensitivity
 - B. Diagnostic Sensitivity
- 6. Specificity
 - A. Analytical Specificity
 - B. Diagnostic Sensitivity
 - C. Interfering Substances
- 7. Acceptance criteria
 - A. 90% as compared to current/reference method
 - B. Matches or exceeds manufacturer's information
 - C. Observed Error is less than or equal to Acceptable Total Error

Quantitative Method – FDA cleared

- 1. Accuracy/Bias (Systematic Error)
 - A. Comparison Experiment
 - a. Comparison/Difference Plot
 - b. Constant Systematic Error
 - c. Proportional Systematic Error
 - B. Recovery Experiment
 - C. Statistics
- 2. Precision (Random Error)
 - A. Replication Experiment
 - B. Statistics

Quantitative Method – FDA cleared

- 3. Reportable Range
 - A. Analytical Measurement Range
 - B. AMR validation
- 4. Reference Range (Normal Values)
 - A. Reference Range verification

- 5. Acceptance Criteria
 - A. 90% as compared to current/reference method
 - B. Matches or exceeds manufacturer's information

Quantitative Method – Non-FDA cleared

- 1. Accuracy/Bias (Systematic Error)
 - A. Comparison Experiment
 - a. Comparison/Difference Plot
 - b. Constant Systematic Error
 - c. Proportional Systematic Error
 - B. Recovery Experiment
 - C. Statistics
- 2. Precision (Random Error)
 - A. Replication Experiment
 - B. Statistics

Quantitative Method – Non-FDA cleared

- 3. Reportable Range (Analytical Measurement Range)
 - A. Linearity Experiment
- 4. Reference Range (Normal Values)
 - A. Reference Range verification
- 5. Specificity
 - A. Interfering Substance Experiment

Quantitative Method – Non-FDA cleared

- 6. Sensitivity
 - A. Detection Limit Experiment
- 7. Acceptance Criteria
 - A. 90% as compared to current/reference method
 - B. Matches or exceeds manufacturer's information
 - C. Observed Error is less than or equal to Acceptable Total Error

Instrument Validation

METHOD PERFORMANCE SPECIFICATIONS (CAP Requirements)

- 1. New Instrument of a different make or model of current instrument
- 2. Instruments of same make & model as the current instrument
- 3. Instruments that have been moved from one location to another in the laboratory

Experiment Section

- Comparison /Difference Plots
- * Detection Limit Experiment for Sensitivity
- * The Linearity or Reportable Range Experiment
- * Regression Statistics for Comparison Experiment
- * Allowable Total Error
- * Interference Experiment
- * Decision on Method Performance

Comparison Plot

* Plot Test results on y-axis

- Plot Current or Comparison results on x-axis
- * Show the general relationship
- Help identify discrepant results

"Comparison Plot"

Comparative Method Result

Comparison Plot

- * Accuracy/Systematic Error- Two types:
- Constant Systematic
 Error
- Proportional Systematic
 Error

Comparative Method Result

Difference Plot

- * Also known as "Bias" Plot
- Test results minus
 comparative results on y-axis
- Current or Comparative results on x-axis
- Half of points above, half below zero line
- Help identify proportional/constant systematic error

Comparative Method Result

- & Graph the data creating Comparison Plot
 - * Identify outliers and repeat to confirm.
 - Line of best fit (visually or using statistics program) gives linear regression equation Y = a + bX
 - Calculate correlation coefficient "r" measures how well the results from the 2 methods change together. A 1.000 indicates perfect correlation
 - If r is high (>=.99), use regression line to find bias at analyte concentrations corresponding to critical decision points (ex. glucose: 126 mg/dL)

- If r < .975, regression equation not reliable; use paired t-test to determine if a bias is present at the mean of the data
- Analytes with wide range (cholesterol, glucose, enzymes, etc.) tend to have high r in comparison studies; analytes with narrow range (electrolytes) tend to have low r
- r should not be used to determine the acceptability of a new method. It measures how well the results from the 2 methods change together

- * t-Test used for systematic error or inaccuracy
 - Used to test two means and determine whether a difference exists between them.
 - Paired t-Test when every sample is analyzed by both the test and comparative method (two methods)
 - Does not address the acceptability of the method's performance, but only whether there is systematic error present.

- * F-Test- used for random error or imprecision
 - Tells whether the difference in variances is statistically significant
 - * Compares the calculated F-value with a critical F-value
 - Says nothing about whether the random error of the test method is acceptable, but only whether it is different from that of the comparative method.

Detection Limit Experiment for Sensitivity

- Limit of Blank (LoB)
- * Limit of Quantification (LoQ)
- * Limit of Detection (LoD)
- Types of Samples
 - * Blank Solution
 - * Spiked Sample
 - * Number of Replicate Measurements
 - * Time Period of Study

Detection Limit Experiment

Reportable Range

- * Analytical Measurement Range (AMR)
- * Linearity Experiment
- * 5 levels in triplicate

Reportable Range-Linearity Experiment

Reported Value

- Observed results on y-axis
- * Known values on x-axis
- Create best straight line
 through as many points as
 possible, adhering to the
 lower points
- Assess Total Error where lines diverge to determine linearity

Assigned Value

Allowable Total Error

- Allowable Total Error
 - Standards for Reporting Diagnostic Accuracy (STARD)
 - * Analytical Quality Requirements- CLIA Proficiency Testing Criteria
- * Observed Total Error = SE + RE
 - * Systematic Error (SE)
 - * Y= a +bx at medical decision concentration
 - * SE = y x
 - * Random Error (RE)
 - * RE = 3 x Standard Deviation from replication experiment

Allowable Total Error

CLIA proficiency testing criteria for acceptable analytical performance, as printed in the Federal Register February 28, 1992;57(40):7002-186.

Test or Analyte	Acceptable Performance
Cholesterol, total	Target value ± 10%
Cholesterol, high dens. lipoprotein	Target value ± 30%
Glucose	Target value ± 6 mg/dL or ± 10% (greater)
Triglycerides	Target value ± 25%
Blood lead	Target value ± 10% or ± 4 mcg/dL (greater)
Hemoglobin	Target ± 7%
Rubella	Target value ± 2 dilution or (pos. or neg.)

Allowable Total Error

- Observed Total error = SE + RE must be less than the allowable Total Error
- * To be used to judge method performance if there is no information for method performance from literature, or from manufacturer.

Interference Experiment

- * For Qualitative Testing
- * For Quantitative Testing
- * Criteria for Acceptable Performance

Interference Experiment

- * Test common interfering substances (interferer)
- Perform experiment for each substance in duplicate
- Acceptability is based on comparing the observed difference of readings and the manufacturer's information or the allowable error for the method.

The Interference Experiment

Decision on Method Performance

- Method Decision Chart
- To be used when there is no documented information for acceptable performance
- * The Method Decision Chart can help assess the acceptability of methods with marginal performance
- Provides objective assessment of performance relative to "standard" or quality requirement that defines the total allowable error

- Express the allowable total error as a percentage of the medical decision concentration. Most CLIA allowable errors are already given in percent
- Express observed SD (s,%) and bias (bias,%) in percent
- Combine systematic and random errors in a graph showing ideal bias with differing levels of precision (random errors)

- Label the y-axis "Allowable inaccuracy, (bias,%)" and scale from 0 to TEa, e.g., if TEa is 10%, scale the y-axis from 0 to 10% in increments of 1%.
- * 2. Label the x-axis
 "Allowable imprecision, (s,%) and scale from 0 to 0.5 TEa, e.g., if TEa is 10%, scale the x-axis from 0 to 5% in increments of 0.5%.

- * 3. Draw a line for bias + 2 SD
- * 4. Draw a line for bias + 3 SD
- * 5. Draw a line for bias + 4 SD
- * 6. Draw a line for bias + 5 SD
- 7. Draw a line for bias + 6 SD
- 8.Label the regions "unacceptable," "poor," "marginal," "good," "excellent," and "world class" as shown in the figure.

Decision on Method Performance

- Method Decision Chart
 - * Unacceptable Performance-
 - Poor Performance -Not acceptable
 - Marginal Performance- requires extra controls, well-trained operators and monitoring. Not acceptable
 - * Good Performance -Acceptable
 - * Excellent Performance -Acceptable
 - * World Class Performance -Acceptable

- Express your observed
 bias and SD in percent and
 plot your observed results
- Methods A, B and C are acceptable because they demonstrate good performance compared to CLIA requirements for acceptable performance

Validation Tool Kit

Conclusion

- * Method Validation is about Error assessment!
- Statistics don't tell you if the method is acceptable, they provide estimates of errors which allow you to judge the acceptability of a method.
- Method performance is judged acceptable when observed error is less than or equal to the defined allowable error.

