Microbiology of Today and Tomorrow, How Changes in Technology will Impact the Care We Deliver

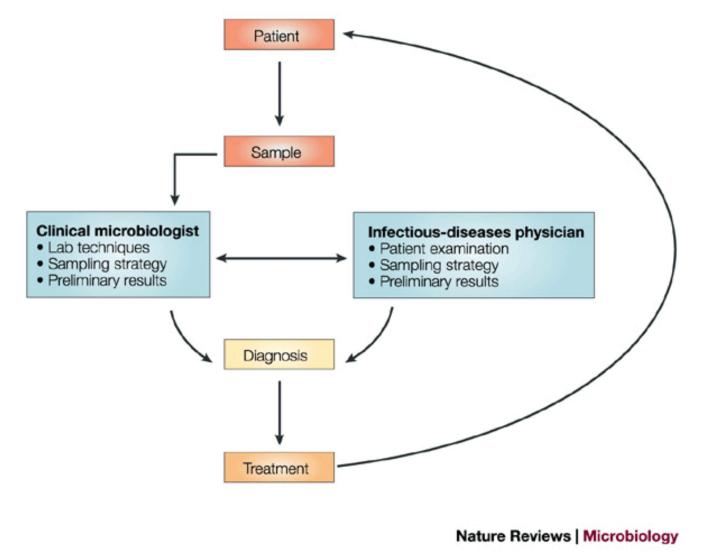
Nathan A Ledeboer Associate Professor of Pathology Medical College of Wisconsin

Medical Director, Microbiology and Molecular Pathology Dynacare Laboratories and Froedtert Hospital

Medical Director, Laboratory Outreach, Logistics, and Reference Services Dynacare Laboratories Milwaukee, WI

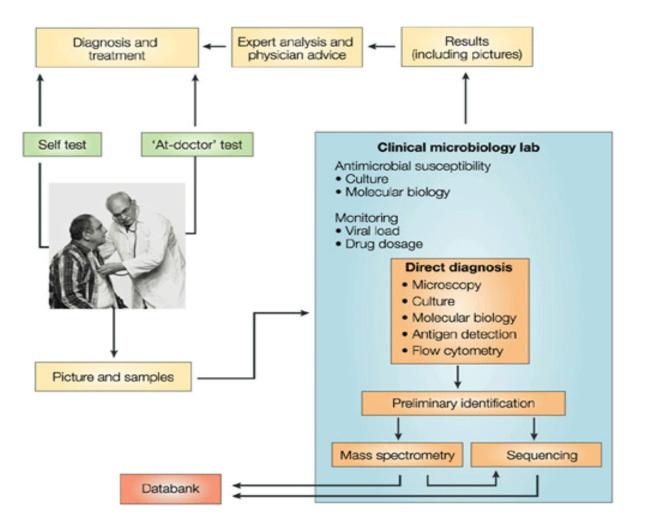
Financial Disclosures

- Consultant
 - Nanosphere
 - ThermoFisher Scientific
 - LabCorp
 - iCubate
 - Copan Diagnostics
 - BD Diagnostics
- Board Member
 - Evogen
- Honoraria
 - Bruker Daltonics
- Research Grants
 - Meridian, Quidel, IMDx, Cepheid, BD, bioMérieux, Bruker Daltonics, Nanosphere, Seegene, Life Technologies, Prodesse, Great Basin Corp, iCubate, Biohelix, BioRad
- Will discuss products that are not FDA approved



Outline

- Drivers of Change
- Advances in Microbiology:
 - Culture
 - Mass Spectrometry
 - Molecular Microbiology
 - Sequencing
 - Panel Testing
 - Automation


Current pathways of communication for the diagnosis and treatment of infectious diseases

We Practice What We Teach

OF WISCONSIN

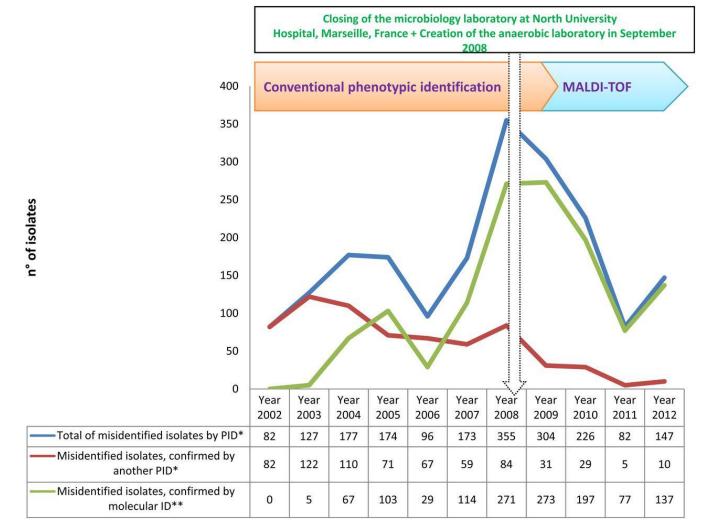
The future organization of clinical microbiology services – a Paradigm Shift

Clinical and Treatment-Related Outcor			
Outcome	Total		
Outcome	Preintervention ($n = 256$)	Intervention ($n = 245$)	P Value
Clinical outcomes			
30-day all-cause mortality	52 (20.3)	31 (12.7)	0.021
Time to microbiological clearance, d	3.3 ± 4.8	3.3 ± 5.7	0.928
Length of hospitalization, d	14.2 ± 20.6	11.4 ± 12.9	0.066
Length of ICU stay, d	14.9 ± 24.2	8.3 ± 9.0	0.014
Recurrence of same BSI	15 (5.9)	5 (2.0)	0.038
30-day readmission with same BSI	9 (3.5)	4 (1.6)	0.262
Treatment-related outcomes			
Time to effective therapy, h	30.1 ± 67.7	20.4 ± 20.7	0.021
Time to optimal therapy, h	90.3 ± 75.4	47.3 ± 121.5	<.001

Huang A M et al. Clin Infect Dis. 2013;cid.cit498

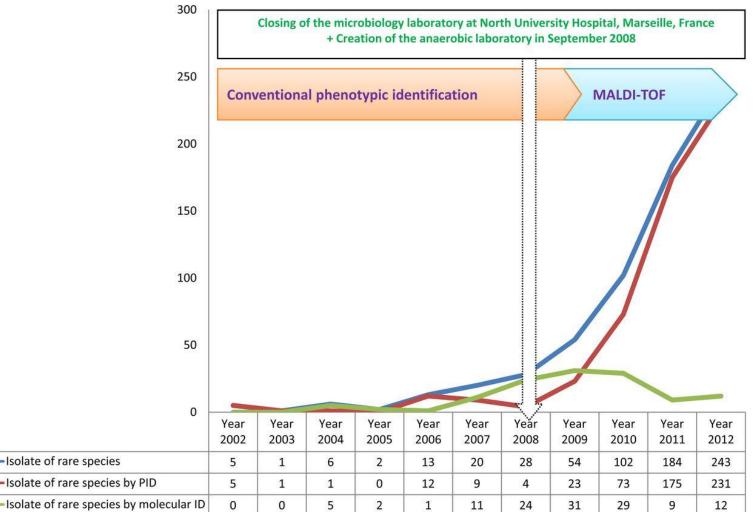
The Future of Bacterial Culture

- Increased Consolidation
- Automation
- Culture will be used less as molecular will replace many applications
- Culture is not going away, we just need to become more efficient



The Future of Mass Spectrometry

- Continued migration to mass spectrometry for microbial ID based on performance and cost
- Automation will simplify the set-up and further drive down costs
- Continued expansion of applications
- Limitations of MALDI-TOF will become apparent
 - Susceptibility testing


Time course of the numbers of total isolates misidentified using phenotypic identification (PID*), isolates confirmed by a second PID* and isolates confirmed by molecular identification (ID**) over 11 years of routine identification in our clinical laboratory.

Seng P et al. J. Clin. Microbiol. 2013;51:2182-2194 We Practice What We Teach

Time course of the numbers of isolates of 128 rare species, 48 of which were identified using phenotypic identification (PID), and 75 of which were identified using molecular identification (ID).

Seng P et al. J. Clin. Microbiol. 2013;51:2182-2194

The Future of Molecular Biology

- Migration away from singleplex PCR to disease state testing
 - Eg. stool pathogen panels, sepsis panels, pneumonia panels
- Moving testing closer to patient
- Increased competition based on menu
 - Menu will be king, less capital for boxes
- Increased competition based on price
- Increased need for clinical data supporting use of molecular tests
- Movement to FDA approved kits

Enteritis

Scope of problem-

- Enteric illness affects millions yearly in US alone
 - ✓ Mortality in infants and elderly

Definition-

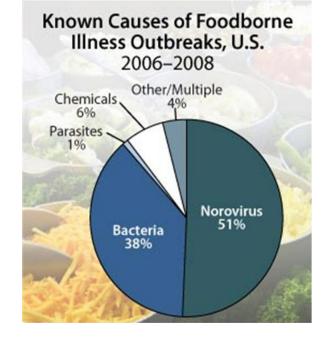
 $\checkmark \ge 3$ unformed stools in 24 hr period

Causes-✓ Foodborne

• Salmonella, Campylobacter, Y. enterocolitica, V. parahaemolyticus, ETEC, EPEC

✓ Environmental

• Cryptosporidium, Giardia, Isospora/Cyclospora, Aeromonas, Plesiomonas


✓ Contagious

• Rotavirus, Norovirus, Shigella, V. cholerae, C. difficile

 \checkmark Toxin mediated

• STEC, EHEC, C. perfringens, B. cereus, S. aureus

Choices and Algorithms

EHEC/STEC

E. coli containing *stx1* or *stx2* Serotype o157 associated with *stx2* carriage

• HUS in 2-10% of infected peoples

CDC recommendation (2009) and Joint Commission updated standard (2013) to culture for O157 and use EIA/NAAT for stx1/2

TABLE 3.	Cost of stool	testing,	Upstate	Medical	University	Hospital
----------	---------------	----------	---------	---------	------------	----------

Test	Cost per test $(\$)^a$	Cost per positive test (\$)
Stool culture	11.88	255.42 333.77
<i>C. difficile</i> PCR Shiga toxin immunoassay	52.80 16.11	18,300.00

^a Includes labor, reagents, and controls.

Marcon, M.J., and Kiska, D.L.. JCM 2011

Enteric pathogen "panels"

Potential Benefits

✓ Higher sensitivity for detection/identification of enteric pathogens

✓ More rapid TAT

Considerations

- ✓ Cost of molecular testing
 - ✓ Technologist expertise
 - Test complexity
 - ✓ Level of automation
- Sample Result? Off line extractions or PCR
 - Volume!!!!
 - ✓ Breadth of targets
- All inclusive (viral, parasitic, bacterial, toxin)
- Targeted (common causes of CA enteritis)

PCR vs Culture?

	No. positive	No. positive											
Assay	Stx1		Stx2		Stx1 and St	k2	Total						
/ locay	Specimen s	Patients	Specimen s Patients		Specimen s	Patients	Specimen s	Patients					
PCR	12	8	2	1	7	3	21	12					
EIA Premier	3	2	0 0		3 2		6	4					
ImmunoC ard	3	2	0	0	1	1	4	3					
SMAC	0	0	0	0	5	3	5	3					

ProGastro SSCS

Prospective study

• Preserved stools

Comparison to reference culture method

	TP	TN	FP	FN	Total	Sens	Spec
Campylobacter*	20	1106	13 ^a	0	1139	100.0%	98.8%
Salmonella	20	1108	10 ^b	1	1139	95.2%	99.1%
Shigella	15	1118	6 ^c	0	1139	100.0%	99.5%
stx1/2	9	1121	9 d	0	1139	100.0%	99.2%

*C. coli or C. jejuni

^a6/13 positive by bi-directional sequencing
 ^b10/10 positive by bi-directional sequencing
 ^c6/6 positive by bi-directional sequencing
 ^d9/9 positive for *stx*1 or 2 by bi-directional sequencing

Buchan et al, JCM, 2013

ProGastro SSCS

Prospective study

• Preserved stools

<u>Culture</u> sensitivity compared to ProGastro SSCS

	-						
	TP	TN	FP	FN	Total	Sens	Spec
Campylobacter*	20	1113	0	6	1139	76.9%	100.0%
Salmonella	20	1108	1	10	1139	66.7%	99.9%
Shigella	15	1118	0	6	1139	71.4%	100.0%
stx1/2 (EIA)	9	1121	0	9	1139	50.0%	100.0%
*C. coli or C. jejuni						\checkmark	

Limited number of pathogens

- \succ Requires nucleic acid extraction and <u>two</u> different master mix reactions
 - Manual pipetting, setup

Buchan et al, JCM, 2013

Enteric pathogen "panels"

BD MAX Enteric Bacterial Panel (EBP)

- In FDA clinical trials
- Targets Salmonella, Shigella, Campylobacter, stx1, stx2

Fully automated, sample to result

- Nucleic acid extraction , amplification , detection
 - Batch 1-24 samples
 - TAT 2-3 h

Clinical comparison of the BD MAX Enteric Bacterial Panel (EBP) with the ProGastro SSCS Assay for the detection of *Salmonella*, *Shigella*, *Campylobacter* and toxin encoding *stx1* and *stx2* genes in clinical stool specimens

- Preserved stool specimens were collected prospectively (n=210) or retrospectively (n=67) and tested using EBP and PG.
- For EBP, 10 μL of specimen was transferred to a sample buffer tube, vortexed, and analyzed using the BD MAX.
- For PG, 100 μ L of a 1:10 dilution of specimen was extracted using the NucliSENS easyMAG system.
 - Extracted nucleic acid was combined with SSC (Salmonella, Shigella, Campylobacter) and STEC (stx1, stx2) PCR master mixes and run in parallel RT-PCR reactions.
 - Amplification and detection were performed using the Cepheid SmartCycler.
- Results from EBP and PG were compared to routine culture and *stx1/2* enzyme immunoassay as "gold standard". Discrepancies were resolved using an alternative PCR and bi-directional sequencing.

Comparison of MAX to PG

BD (Combined)	ТР	TN	FP	FN	total	sens	spec
Salm	20	250	3	4	277	83.33%	98.81%
Shig	5	272	0	0	277	100.00%	100.00%
camp	21	244	8	4	277	84.00%	96.83%
stx	20	255	2	0	277	100.00%	99.22%
total	66	1021	13	8	278	89.19%	98.74%
PG (Combined)	ТР	TN	FP	FN	total	sens	spec
Salm	19	250	3	5	277	79.17%	98.81%
Shig	5	272	0	0	277	100.00%	100.00%
camp	22	252	0	3	277	88.00%	100.00%
stx	20	255	2	0	277	100.00%	99.22%
total	66	1029	5	8	278	89.19%	99.52%

Enteric pathogen "panels"

xTAG GPP

- FDA-cleared
 - Targets
- Bacterial- Salmonella, Shigella, Campylobacter, E. coli 0157, ETEC (LS/ST), C. difficile
 - Viral Norovirus (GI/II), Rotavirus A
 - Parasites Giardia, Cryptosporidium

Larger panel

Requires nucleic acid extraction, PCR, hybridization/reading
 Manual pipetting, setup, open transfer of amplicon, equipment
 5 h TAT

GPP Performance

Organism(s)	% sensitivity (95% CI)	% specificity (95% CI)	% PPV (95% CI)	% NPV (95% CI)		
Adenovirus 40/41	100 (60–100)	100 (98–100)	100 (60–100)	100 (98–100)		
Vibrio cholerae	100 (31–100)	100 (98–100)	100 (31–100)	100 (98–100)		
Yersinia enterocolytica	100 (31–100)	100 (98–100)	100 (31–100)	100 (98–100)		
Salmonella spp.	92 (72–99)	100 (98–100)	100 (83–100)	99 (97–99)		
Shigella spp.	93 (64–99)	100 (98–100)	100 (72–100)	99 (97–99)		
Campylobacter jejuni	90 (67–98)	99 (97–99)	94 (72–99)	99 (97–99)		
C. difficile A/B toxins	c. difficile A/B toxins 91 (69–98)		100 (80–100)	99 (97–99)		
ETEC/STEC ^b	94 (79–99)	100 (98–100)	100 (87–100)	100 (87–100)		
E. coli O157:H7	100 (55–100)	100 (95–100)	100 (55–100)	100 (95–100)		
Rotavirus A	100 (63–100)	100 (98–100)	100 (63–100)	100 (98–100)		
Giardia lamblia	95 (74–99)	99 (97–99)	95 (74–99)	99 (97–99)		
Entamoeba histolytica	100 (46–100)	89 (84–93)	17 (06–36)	100 (98–100)		
Cryptosporidium spp.	100 (73–100)	100 (98–100)	100 (73–100)	100 (98–100)		
Norovirus GII	100 (46–100)	100 (95–100)	100 (46–100)	100 (95–100)		
Norovirus GI	ND	100 (95–100)	ND	100 (95–100)		
Total	94.5 (90–97)	99 (99–100)	87 (81–91)	99 (99–100)		

Navidad et al, JCM. 2013

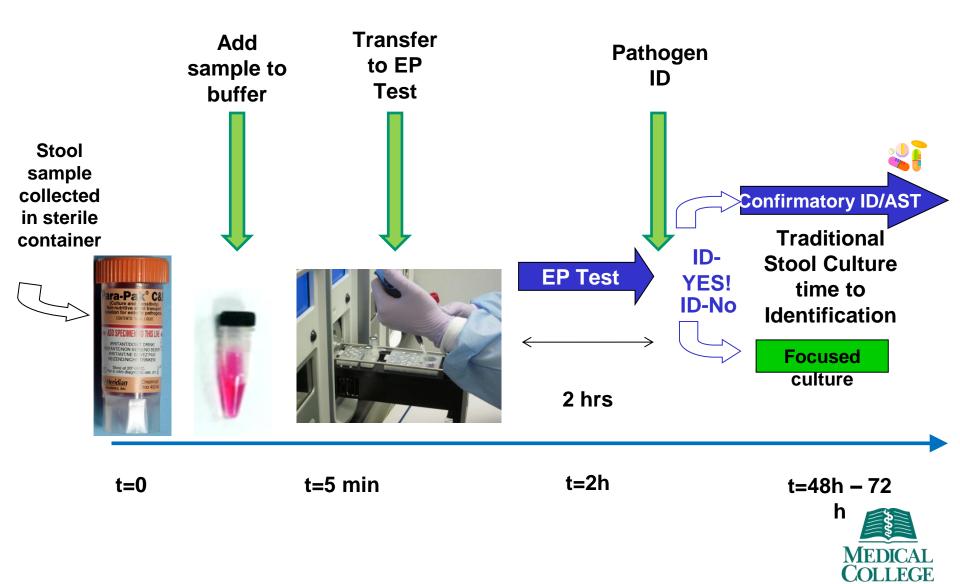
GPP Turnaround

Organism	Number (%)	Mean, median	% Male	Median day of request	Median LOS ² (days)	Median isolation	
	detected by GPP ¹	age				time (days)	
C. difficile	57 (5.8)	47.6, 56	53	1	5	4	
Norovirus	90 (9.1)	45.4, 41	48	1	3	3	
Adenovirus	8 (0.8)	17.9, 3	50	1	1.5	1	
Rotavirus	27 (2.7)	15.2, 1	63	1	2	2	
Campylobacter	55 (5.6)	41.2, 41	65	0	3	2	
Salmonella	30 (3.0)	25.5, 25	60	1	3	4	
Shigella	13 (1.3)	39.4, 46	77	0.5	3	3	
E. coli O157	3 (0.3)	16, 14	0	0	16	4	
Giardia	14 (1.4)	31.2, 30	86	0	1.5	2	
E. histolytica	6 (0.6)	22.5, 13.5	50	2	1	1	
Cryptosporidium	6 (0.6)	56.3, 60.5	50	1	5.5	2	
Any organism	282 (28.6)	40.3, 39	56	1	3	3	
No organisms	704 (71.4)	47.3, 50	53	1	6	2	
Any bacteria	157 (15.9)	40.1, 41	59	1	3	3	
Any virus	124 (12.6)	37.5, 35	51	1	3	2.5	
Any parasite	25 (2.5)	35.4, 30	68	0	5	1	
Two or more organisms	27 (2.7)	20.7, 1	67	0	3	2.5	
All samples	986	45.3, 48	54	1	5	3	

¹ Gastrointestinal Pathogen Panel

² Length of stay

Halligan et al., 2013. CMI


Enteric pathogen "panels"

BioFire FilmArray GI

- In development
- <u>E. coli</u> ETEC, EPEC, STEC/EHEC-O157:H7, EIEC, EAEC
- <u>Bacteria</u> Aeromonas spp., Salmonella spp., Vibrio spp., V. cholorae, Shigella spp., S. dysenteriae, Campylobacter spp., Y. enterocolitica, C. difficile/Nap1, P. s shigelloides
- <u>Viruses</u> Norovirus (GI, GII, and GIV), Adenovirus F (40/41), Rotavirus (A, B, and C), Human Astrovirus, Sapovirus
 - <u>Protozoa</u> Cryptosporidium group, Giardia lamblia, Entamoeba histolytica, Cyclospora cayetanensis
- Highly multiplexed, but is it suitable for high volume testing?
 - \$/test
 - 1 test = 1 instrument

Nanosphere Enteric Pathogen Panel - Workflow

We Practice What We Teach

OF WISCONSIN

Preliminary results for bacterial targets –Verigene EP vs. Reference culture/Automated Phenotype Identification Stx 1 and Stx 2

EP Torgot Apolyto	Percent Agreement							
EP Target Analyte	Positive	Negative						
Campylobacter	96.7%	99.1%						
Salmonella	96.6%	99.5%						
Shigella	98.1%	99.0%						
Vibrio	91.4%	100%						
Y. enterocolitica	100%	100%						
Stx1	100%	99.9%						
Stx2	98.5%	99.9%						

Study included 7 geographically distinct sites, n=1684

Molecular Enteric Pathogen Testing Advantages

- Rapid rule out for common CA pathogens (high NPV/sens)
 - Positive stools may not require further workup
- Work-up of negative stools can be more focused (O&P, allergic, toxin)
 - Antibiotic stewardship
 - Hold empiric therapy

Salmonella, EHEC, noro → may not require therapy; Campylobacter, Shigella → AST, treat

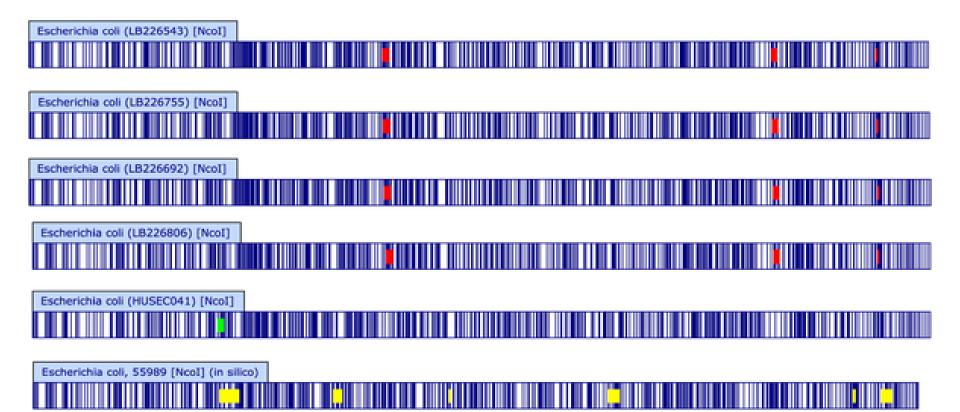
Infection control

➢ Identify outbreak or potential outbreak 48-72 h sooner →contain
 ➢ Family members, school/daycare → isolate Shigella , Norovirus, possible source EHEC

- Cost neutral
- Comparable to manual workup (labor not cheap, FNs etc.)
 Full-automation "walk-away"
 - Compliance with CDC for stx1/2 at no "added" cost.

Next Generation Sequencing

- Benefits
 - Detection of unculturable organisms
 - Interrogate genomes for novel and known resistance determinants
 - Direct from specimen identification
- Challenges
 - Need for clinically relevant databases
 - Cost
 - Turnaround



Next Generation Sequencing

	Ion Torrent	454 Sequencing	Illumina
Sequencing Chemistry	lon semiconductor sequencing	Pyrosequencing	Polymerase-based sequence-by- synthesis
Amplification approach	Emulsion PCR	Emulsion PCR	Bridge amplification
Mb per run	100	100	600,000
Time per run	1.5 hours	7 hours	9 days
Read length	200 bp	400 bp	2x100 bp
Cost per run	\$ 350 USD	\$ 8,438 USD	\$ 20,000 USD
Cost per Mb	\$ 5.00 USD	\$ 84.39 USD	\$ 0.03 USD
Cost per instrument	\$ 50,000 USD	\$ 500,000 USD	\$ 600,000 USD

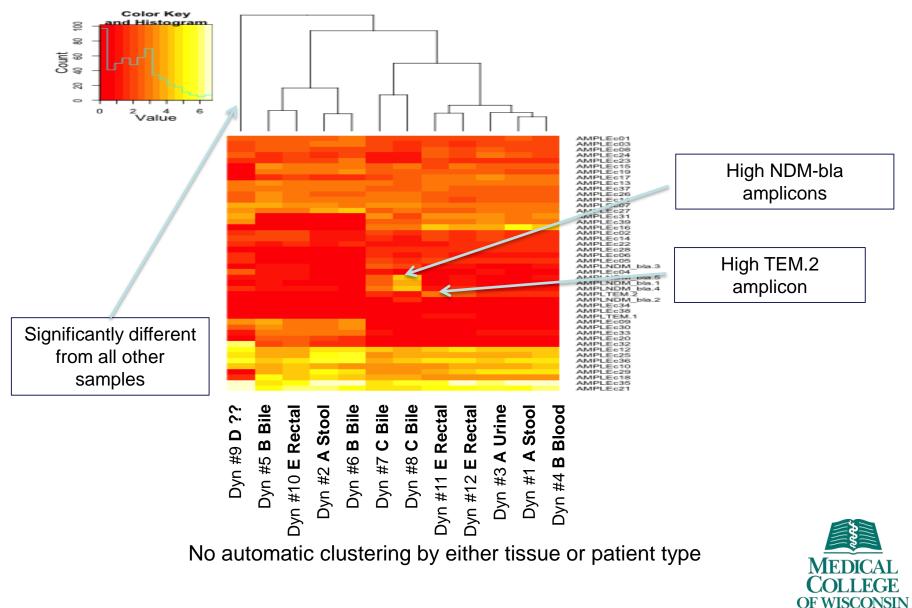
Whole chromosomal Optical Maps of the EHEC O104:H4 outbreak and related strains.

Mellmann A, Harmsen D, Cummings CA, Zentz EB, et al. (2011) Prospective Genomic Characterization of the German Enterohemorrhagic *Escherichia coli* O104:H4 Outbreak by Rapid Next Generation Sequencing Technology. PLoS ONE 6(7): e22751. doi:10.1371/journal.pone.0022751

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0022751

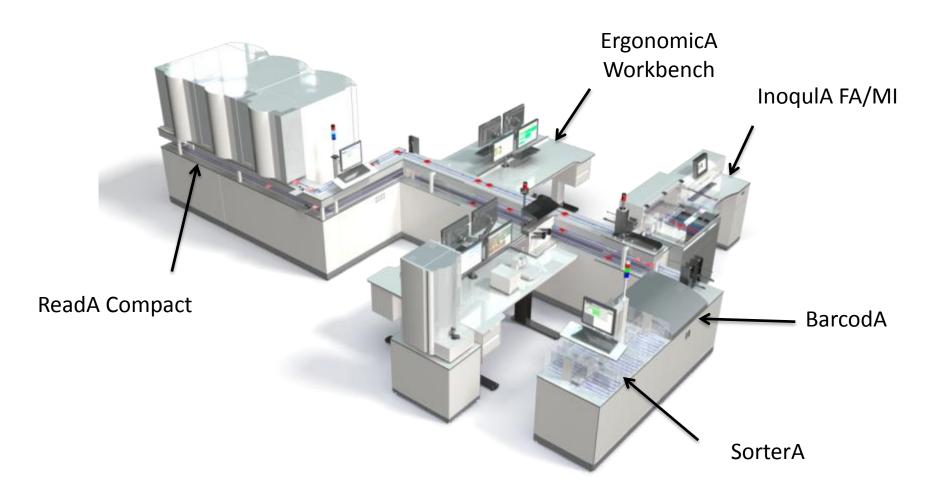
Specific species identification

Unique mapping		presen	t 🗋	N	ot prese	nt 🗌	No	ot targete	ed			Membe	ers of Co	NS	
Sample amplicon	Enterococcu s faecium,	cus	cus	Staphylococ cus epidermidis	Staphylococ cus	epidermidis,	cus	Staphylococ cus epidermidis	cus	Staphylococ cus epidermidis, Corynebact erium spp.	cus epidermidis, Corynebact	Staphylococ cus hominis	Staphylococ	Staphylococ	Viridans group Streptococci
AMPLE_faecalis															
AMPLE_faecium															
AMPLE_faecium_vanA															
AMPLvanB_Enterococcus															
AMPLMRSA-junction.104														Conidor	midia
AMPLStaphylococcus_aureus														S.epider is a merr CoNS	
AMPLStaphylococcus_aureus_spa															
AMPLStaphylococcus_aureus_erm															
AMPLStaphylococcus_epidermidis															
AMPLStaphylococcus_saprophyticus _coagulase_neg															
_coaguiase_neg										6	Strep.pne a membe Strep. No	r of Virida	ans gr	->	


All mapping further identifies mecA resistance

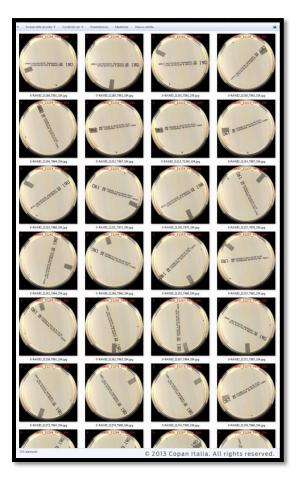
Haemolyticus_coagulase_neg amplicons have many off-target hits and can not be used for identification purposes. .

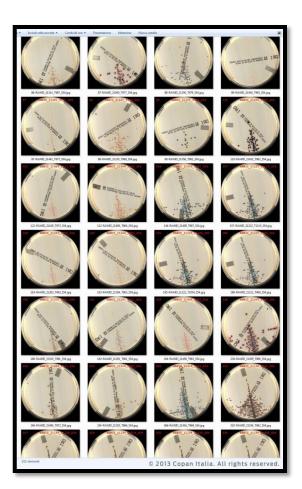
		Provided by collaborator		Observed		Notes
Sample Name	Barcode	Bacteria	Resistance	Bacteria(Species)	Resistance gene(s)	
MCW-21	21	S. aureus	susceptible to all	S.aureus	Not detected	
MCW-22	22	S. epidermidis	Ery/Clinda/Tet/Doxy/Ox resistant	S.epidermidis	Erm, MecA	
MCW-23	23	Strep. Spp., Lactococcus, Leuconostoc	Not performed			No library
MCW-24	24	Strep. Sanguinis	Ceftri/vanc susceptible	Positive for 3 out of 7 Strep pneumoniae amplicons	Mef	
MCW-25	25	S. hominis	Not performed	Positive for 5 CoNS amplicons in unique mapping	Not detected	
MCW-26	26	spp	Not performed	Positive for 8 CoNS amplicons in unique mapping	TEM	
MCW-27	27	Lactobacillus	Not performed			No library
MCW-28	28	S. hominis	Not performed	Positive for 9 CoNS amplicons in unique mapping	TEM	
MCW-29	29	CoNS	Not performed	Positive for 5 CoNS amplicons in unique mapping	Not detected	
MCW-30	30	S. epidermidis	Not performed	S.epidermidis	Erm, MecA	
MCW-31	31	S. dysgalactiae	susceptible to all			No library
MCW-32	32	s. capitis	Not performed	Positive for 8 CoNS amplicons in unique mapping	Not detected	
MCW-33	33	S. epidermidis	Ery/Clinda/Ox Res, Tet/Doxy Sus	S.epidermidis	Erm, MecA	
MCW-34	34	S. epidermidis	Not performed	S.epidermidis	Erm, MecA	
MCW-35	35	Corynebacterium spp	Not performed			No library
MCW-36	36	S. epidermidis	Not performed	S.epidermidis	Erm, MecA	
MCW-37	37	Strep viridans gr.	susceptible to all	Positive for 4 out of 7 Strep pneumoniae amplicons	Not detected	
MCW-38	38	E. faecalis	Amp/Vanc susceptible	E.faecalis	Not detected	
MCW-39	39	atophobium rimae, E coli	Not performed (A. rimae)			No library
MCW-40	40	S. epidermidis	Not performed	S.epidermidis	Erm, MecA	
MCW-41	41	S. epidermidis	Not performed	S.epidermidis	MecA	
MCW-42	42	S. hominis	Not performed	Positive for 3 CoNS amplicons in unique mapping	Erm, MecA	
MCW-43	43	S. epidermidis	Not performed	S.epidermidis	Not detected	
MCW-44	44	S. dysgalactiae	susceptible to all			No library
MCW-45	45	E. coli, M. luteus				Very dirty library


Heat Map – Per Amplicon Coverage Metric as Estimated by Percentage of Uniquely Mapped Reads

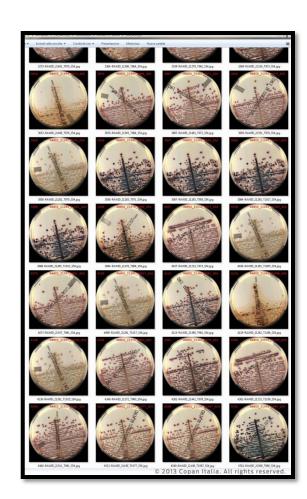
Trends to Automation?

- The Industry is Changing
 - Specimens increasing on average 10-15% per year
 - Laboratory consolidation
 - Reimbursement
- Workforce
 - Less students choose Medical Technology: reduction of 30-50%
 - Pay for technologists is substandard
- Quality
 - Physicians are demanding more services, in less time
 - Traceability





Pre-Sorting of urine cultures – 1ul



0 CFU/ml 24 cultures per screen

10⁴ CFU/ml shows as approximately 10 colonies

We Practice What We Teach

10⁵ CFU/ml shows as approximately M 100 colonies OF

Costs

- Equipment Initial investment
 - Business case this is most difficult (important) part
 - WE NEED to prove ROI return on investment prior to purchase
 - What assurances are vendors giving us?
 - For a large lab could consume large % of system capital budget
 - It's own project with "special funding"

Change management

- What is change management is there a cost to this?
 - Have we considered this concept fully in the laboratory before??
 - How will the automation impact the staffing??
- Information Technology needs has to be considered!
- Costs of remodel Facilities
 - Typically have to plan far enough in advance for most hanges

Slide courtesy of S. Novak

Considerations

- Change Management/ Staff acceptance
- LIS- Complex integration with automation
- Impact on other areas
- Integration of current systems
- Redundancy and backup for downtime
- Technology enhancements
- Impact of growth on staffing requirements after adoption of automation
- Impact on Safety

So What's a Lab to Do? (Especially a Small one)

- Emerging technologies can be utilized in a variety of laboratory sizes
 - Companies are developing flexible solutions
 - MALDI-TOF can be cost-effective even for very low volume laboratories
 - Molecular solutions are scalable
 - Examples
 - Verigene, FilmArray, Xpert, GreatBasin
 - Convince the manufacturer to place an instrument
 - Consolidate testing to a minimum number of platforms to achieve volumes
- Size is not as important as before
 - Reimbursement changing to a quality basis, you will be paid for the value you bring
 - "Change the Message" Demonstrate how lab testing can improve quality for the whole system
 - Cite the literature

So What's a Lab to Do? (Especially a Small one)

- Who Can Help / Where can I get information without a travel budget?
 - Use your reference labs
 - JCM is available for free after 6 months
 - Attend regional meetings such as WSCLS, SCACM, etc
- Will new technologies prompt more consolidation?
 - Unknown, but potentially yes...
 - Recent Wall Street Journal article questions the benefits of large consolidated systems over smaller individual systems

Questions?

"The patient in the next bed is highly infectious. Thank God for these curtains."

