Speed is Safety - And You Can Save Money Too!

Rapid Identification of Positive Blood Cultures

April 23, 2014
Raymond P. Podzorski, Ph.D., D(ABMM)
Clinical Microbiologist
ProHealth Care Laboratories

Raymond P. Podzorski, Ph.D., D(ABMM)
April 23, 2014
No relevant financial relationships do disclose.

CASE PRESENTATION

- 39 y/o male admitted after experiencing fevers, chills, and hypotension
- Tachycardia also noted on examination
- Three sets of blood cultures were obtained on admission
- The blood cultures started signaling positive 13 hours after collection

CASE OUTCOME

Hospital A

Hospital B

- Hospital LOS 11.9 days
- ICU LOS 7.3 days
- Pharmacy costs $\$ 3,371$
- Hospital costs \$45,000
- Hospital LOS 9.3 days
- ICU LOS 6.3 days
- Pharmacy costs $\$ 2,386$
- Hospital Costs \$26,000

What makes the difference?

CASE OUTCOME

Hospital A

- Hospital LOS 11.9 days
- ICU LOS 7.3 days
- Pharmacy costs $\$ 3,371$
- Hospital costs \$45,000

Hospital B

- Hospital LOS 9.3 days
- ICU LOS 6.3 days
- Pharmacy costs $\$ 2,386$
- Hospital Costs \$26,000

Rapid direct identification of positive blood cultures and Antimicrobial Stewardship!

CASE OUTCOME

Hospital A

- Hospital LOS 11.9 days
- ICU LOS 7.3 days
- Pharmacy costs $\$ 3,371$
- Hospital costs \$45,000

Hospital B

- Hospital LOS 9.3 days
- ICU LOS 6.3 days
- Pharmacy costs $\$ 2,386$
- Hospital Costs \$26,000

Objectives

- Demonstrate how rapid microbiology diagnostics impacts patient outcome
- Demonstrate some of the systems available for rapid identification of positive blood cultures
- Illustrate the importance of taking action on a rapid ID result in a timely fashion

Hospital A - BC Time Line

13 hr incubation
Bottle positive

- Hospital LOS 11.9 days
- ICU LOS 7.3 days
$13 \mathrm{hr}+1$ hour

1. Gram stain/Reported to floor
2. Subcuture bottle

Hospital A

- Pharmacy costs \$3,371
- Hospital costs \$45,000
$13 \mathrm{hr}+1 \mathrm{hr}+14 \mathrm{hr}$ Colonies growth on Agar plate

1. Setup ID + Susceptibility Test
2. Perform Presumptive ID
$13 \mathrm{hr}+1 \mathrm{hr}+$ $14 \mathrm{hr}+20 \mathrm{hr}$ Report ID and Susceptibility

ProHealth Care

Hospital A - BC Time Line

13 hr incubation
Hospital A
Bottle positive
$13 \mathrm{hr}+1$ hour

1. Gram stain/Reported to floor
2. Subcuture bottle

Klebsiella pneumoniae
$\mathrm{CFZ}=\mathrm{R}$
$\mathrm{CRO}=\mathrm{R}$
$\mathrm{CAZ}=\mathrm{R}$
$C P E=R$
$G M=S$
$M E R=S$
$13 \mathrm{hr}+1 \mathrm{hr}+14 \mathrm{hr}$ Colonies growth on Agar plate

1. Setup ID + Susceptibility Test
2. Perform Presumptive ID
$13 \mathrm{hr}+1 \mathrm{hr}+$ $14 \mathrm{hr}+20 \mathrm{hr}$ Report ID and Susceptibility

ProHealth Care

Hospital B - BC Time Line

13 hr incubation
Bottle positive

Hospital B

- Hospital LOS 9.3 days
- ICU LOS 6.3 days
$13 \mathrm{hr}+3$ hour

1. Gram stain/Reported

- Pharmacy costs \$2,386

2. Definitive ID done/Reported to floor + Pharmacy
3. Select Resistance markers/Reported

Hospital B - BC Time Line

13 hr incubation
Bottle positive

$13 \mathrm{hr}+3$ hour

1. Gram stain/Reported
13 hr + 3 hour
2. Gram stain/Reported
3. Definitive ID done/Reported to floor + Pharmacy
4. Select Resistance markers/Reported

16 hours
 Klebsiella pneumoniae CTX-M detected

ProHealth Care

CASE OUTCOME

Hospital A

- Hospital LOS 11.9 days
- ICU LOS 7.3 days
- Pharmacy costs $\$ 3,371$
- Hospital costs \$45,000

48 hours 16 hours

Perez, et. al. 2012. Arch. Pathol. Lab. Med. 10.5858/arpa.2012-0651OA

ProHealth Care

Why is the timely selection of antibiotics important?

Appropriateness of Rx within 12 Hrs of BC+ and Mortality
(Severe Sepsis)

ProHealth Care

Why is the timely selection of antibiotics important?

Antimicrobial Stewardship in the Intensive Care Unit Advances and Obstacles

ProHealth Care

HOW CAN WE DO THIS?

Rapid Diagnostics

Antimicrobial Stewardship in the Intensive Care Unit Advances and Obstacles

Recent Advances in Rapid ID of Positive Blood Culture

MALDI-TOF Mass Spectrometry

Nanosphere BC-GP
AdvanDx QuickFISH Gram-Negative BC
Cepheid Xpert MRSA/SA BC
Biofire FilmArray BC Identification Panel

BD GeneOhm StaphSR

FDA cleared/approved

AdvanDx

Gram-Negative QuickFISH ${ }^{\text {M }}$ BC

- Rapid Identification of E. coli, K. pneumoniae and P. aeruginosa from Positive Blood Cultures

ProHealth Care

AdvanDx

PNA probes target ribosomal RNA inside cells

Peptide Nucleic Acid Fluorescence In $\underline{\text { Situ Hybridization }}$

AdvanDx

3 Easy Steps: Fix Sample, Hybridize Probes and View Results. 5 Min. Hands-on Time. 20 Min. Turn-around Time.

Fix

5 Min.
Fix $10 \mu \mathrm{~L}$ of Blood Culture Sample to QuickFISH Slide.

Hybridize

15 Min.
Add PNA Reagents. Hybridize for 15 Min . at $55^{\circ} \mathrm{C}$

PNA Probe Binding to RNA Target
ProHealth Care

Does Anybody Hear?

ProHealth Care

PNA FISH Staphylococcus aureus

Batch testing, once per day, no specific notification of result.
TABLE 1. LOS and duration of vancomycin use for pre- and postPNA FISH groups

Group (n)	Mean hospital LOS (days) \pm SD (median; range)	Mean duration (days) of vancomycin treatment \pm SD (median; range)
Pre-PNA FISH patients (100)	$18.7 \pm 16.5(13.0 ; 2.0-83.3)$	$4.15 \pm 4.03(2.9 ; 0.3-19.2)$
Post-PNA FISH patients (99)	$20.9 \pm 21.0(13.7 ; 1.8-113.5)$	$3.51 \pm 3.43(1.8 ; 0.3-10.8)$
P value	0.35	0.49

Carol Holtzman, Dana Whitney, Tamar Barlam and Nancy S. Miller
J. Clin. Microbiol. 2011, 49(4):1581. DOI:

PNA FISH Staphylococcus aureus

Batch testing, once per day, no specific notification of result.
TABLE 1. LOS and duration of vancomycin use for pre- and postPNA FISH groups

Group (n)	Mean hospital LOS (days) \pm SD (median; range)	Mean duration (days) of vancomycin treatment \pm SD (median; range)
Pre-PNA FISH	$18.7 \pm 16.5(13.0 ; 2.0-83.3)$	$4.15 \pm 4.03(2.9 ; 0.3-19.2)$
patients (100) post-PNA FISH patients (99) P value $20.9 \pm 21.0(13.7 ; 1.8-113.5)$	$3.51 \pm 3.43(1.8 ; 0.3-10.8)$	
	0.35	0.49

Our study demonstrated that the S. aureus PNA FISH assay for the rapid detection of presumptive CoNS pseudobacteremia , when implemented without active reporting of results or additional support from an AST, did not reduce LOS or vancomycin use. In published studies, utilization of the PNA FISH

Carol Holtzman, Dana Whitney, Tamar Barlam and Nancy S.
Miller
ProHJ. Clin. Microbiol. 2011, 49(4):1581. DOI:

We may need to get someone's attention in addition to the nurse on the floor!

Who you gonna call?

Someone who will review the case and take action in a timely fashion.

ProHealth Care

Who you gonna call?

For ProHealth Care it is the on-call Pharmacist.

ProHealth Care

Mountaineering Lore

"Speed is safety!" Climbing Ice
Yvon Chouinard

\# ProHealth Care

㱏Nanosphere

BC-GP BC-GN

Nanosphere

BC-GP BC-GN

- Verigene Test Cartridge
Substrate Holder Reagent Pack

ProHealth Care

Nanosphere

ProHealth Care

$\sqrt{9}$

 Nanosphere

 Nanosphere}Bacterial DNA Detection - Secondary Hybridization

BC-GP BC-GN

ProHealth Care

PNanosphere

- Bacterial DNA Detection - Signal Amplification by Silver Enhancement of Gold Nanoparticles

BC-GP BC-GN

- Analysis of results via lightscattering (array scanning)

ProHealth Care

BC-GP

Staphylococcus spp.
Staphylococcus aureus +/- mecA
Staphylococcus epidermidis +/- mecA
Staphylococcus lugdunensis
Streptococcus spp.
Streptococcus pneumoniae
Streptococcus pyogenes
Streptococcus agalactiae
Streptococcus anginosus group
Enterococcus faecalis +/- vanA or vanB
Enterococcus faecium +/- vanA or vanB

Listeria spp.

Nanosphere

Acinetobacter spp.
Proteus spp.
Citrobacter spp.
Enterobacter spp.
Escherichia coli
Klebsiella pneumonia
Klebsiella oxytoca
Pseudomonas aeruginosa

```
CTX-M (ESBL)
KPC
NDM - 37/11
VIM - 5/2
IMP - 3/1
OXA - 7/5
```


ProHealth Care

Currently in Development

FilmArray' Blood Gulture ID Panel

4-5 minutes hands on

$$
65 \text { minutes }
$$

The FilmArray BCID Panel
Simultaneous detection of 27 targets:

Gram + Bacteria

- Staphylococcus
- Staphylococcus aureus
- Streptococcus pyogenes
- Streptococcus pneumoniae
- Streptococcus
- Streptococcus agalactiae
- Enterococcus
- Listeria monocytogenes

Gram - Bacteria

- Klebsiella oxytoca - Neisseria meningitidis
- Klebsiella pneumoniae
- Pseudomonas aeruginosa
- Serratia
- Proteus
- Acinetobacter baumannii
- Haemophilus influenzae
- Enterobacteriaceae
- Escherichia coli
- Enterobacter cloacae complex

Fungi

- Candida albicans
- Candida krusei
- Candida glabrata
- Candida parapsilosis
- Candida tropicalis

Antibiotic Resistance

- mecA
- KPC
- vanA / vanB

ProHealth Care

FilmArray RP Pouch

Add Sample to Buffer

Load Pouch

Inject Sample

Inject Hydration Solution

Load Pouch in FilmArray

Brought To You By?

Fig. 5. PCR amplification and detection containment vessel prototype

The FilmArray Pouch

BIO FIRE

ProHealth Care

Figure 1. Elogibility and inclusion of the study participants. The most common reasons for ineligibitity among patients were medical circumstances requiting prolonged hospitalization unrelated to the patient's bloodstream infection (BSI; 24.4%), including patients receiving extracorporeal membrane oxygenation (ECMO) for cardiorespiratory falure; advanced heart failure requiring ventricular assist devices (VADs) or an artficial heart; and elective admissions for bone marrow transplantation (BMT). Length of stay (LOS) and hospital cost analyses were conducled in those patients surviving to hospital discharge Abbreviation: 77P, time-to-positivity of index blood culture.
ProHealth Care

Figure 2. Timeline comparison of preintervention and intervention study periods depicting the differences in laboratory procedure and their respective impact on adjusted therapy. Adjusted therapy included, when clinically indicated, de-escalation/escalation of antibiotic therapy, dosing/ route modifications, and/or discontinuation of unnecessary gram-positive coverage. White boxes denote the average times (hours) until the corresponding information was obtained or action implemented in the preintervention (PI) and intervention (Int) groups. The bottom horizontal line represents the global study/patient timeline (hours) and includes point measurements (below) for patients on inactive therapy at 0,24 , and 48 hours in both groups. Abbreviations: EMR, electronic medical record; MALDI-TOF MS, matrix-assisted laser desorption and ionization time-of-flight mass spectrometry.

| | Table 2. | Length of Stay and Cost Outcomes in Survivors ${ }^{\mathbf{a}}$ | |
| :--- | :---: | :---: | :---: | :---: |
| Outcome | Preintervention Cohort $(\mathbf{n}=\mathbf{1 0 0})$ | Intervention Cohort $(\mathbf{n}=\mathbf{1 0 1)}$ | |
| Hospital length of stay | 11.9 ± 9.3 | 9.3 ± 7.6 | .01 |
| Hospital length of stay after BSI onset | 9.9 ± 7.1 | 8.1 ± 6.4 | .01 |
| ICU length of stay | 7.3 ± 8.5 | 6.3 ± 8.7 | .05 |
| ICU length of stay after BSI onset | 6.1 ± 6 | 4.9 ± 6.7 | .09 |
| Total hospital costs | $\$ 45709 \pm \$ 61806$ | $\$ 26162 \pm \$ 28996$ | .009 |
| MS DRG weight | 2.7 ± 2.4 | ± 1.9 | 54 |

Abbreviations: BSI, bloodstream infection; ICU, intensive care unit; MS DRG, Medicare Diagnosis-Related Group.
${ }^{\text {a }}$ Values for length of stay outcomes are given as days, mean \pm SD. Costs are reported as cost per hospitalization, mean \pm SD.

ProHealth Care

Xpert™RSA/SA BC

Cepheid Xpert MRSA/SA Blood Culture

Gently mix the sample by hand, transfer a 50 uL aliquot to the elution reagent vial using the pipette provided

Vortex and transfer the sample into
S chamber
(1-2 minutes hands on)

Insert cartridge and start assay

ProHealth Care

Table 2. Demographic and Clinical Characteristics of Patients in the Study Groups

Characteristic	Pre-rPCR period $(n=74)$	$\begin{aligned} & \text { Post-rPCR period } \\ & \quad(n=82) \end{aligned}$	P^{a}
Age, mean years \pm SD	57 ± 16.7	56 ± 16.0	. 51
Male sex	43 (58)	40 (49)	26
Penicillin allergy	9 (12)	10 (12)	. 60
Surgical service	24 (32)	10 (12)	. 003
ICU ${ }^{\text {b }}$	49 (66)	55 (67)	>.99
MRSA infection	44 (59)	37 (45)	. 08
ID consult	41 (55)	49 (60)	. 63
Time to ID consult, mean days \pm SD $(n=90)$	9 ± 16.4	3 ± 2.4	. 05
Hospital mortality	19 (26)	15 (18)	. 33
Hospital costs by department			
Pharmacy, mean USD \pm SD	$10,375 \pm 21,221$	$7457 \pm 13,250$. 08
Microbiology laboratory, mean USD \pm SD	$6806 \pm 10,290$	5081 ± 6677	. 13
Room and board			
$I C U$, mean USD \pm SD	$27,667 \pm 35,777$	$17,737 \pm 21,464$. 03
Non-ICU, mean USD \pm SD	$12,210 \pm 13,741$	$10,117 \pm 10,932$. 32
Other, ${ }^{\text {c }}$ mean USD \pm SD	$25,464 \pm 36,633$	$16,400 \pm 20,031$. 02
Total hospital costs, mean USD \pm SD $(n=154)$	$69,737 \pm 96,050$	$48,350 \pm 55,196$. 03

NOTE.Data are no. (\%) of patients, unless otherwise indicated. Reported hospital costs are representative of total pharmacy, microbiology laboratory, and room and board cost. ICU, intensive care unit; ID, infectious diseases; rPCR, methicillin-resistant S. aureus/S. aureus blood culture test; SD, standard deviation; USD, United States dollars.
${ }^{\text {a }} P$ values were determined by Fisher's exact test or Wilcoxon rank-sum test as appropriate.
${ }^{\mathrm{b}}$ ICU stay at anytime during hospitalization.
${ }^{\text {c }}$ Includes all hospital costs not previously described, including operating room services, imaging services, and medical and surgical supplies.
PROIEIEALIR CARE

Cepheid Xpert MRSA/SA Blood Culture

Figure 1. Number of infectious diseases pharmacist antibiotic changes from vancomycin to cefazolin or nafcillin for methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia and vancomycin to daptomycin for methicillin-resistant S. aureus (MRSA) bacteremia. rPCR, rapid polymerase chain reaction MRSA/SA blood culture test.

ProHealth Care

Cepheid Xpert MRSA/SA Blood Culture

Figure 2. Mean time to antibiotic switch from vancomycin to cefazolin or nafcillin for methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia and vancomycin to daptomycin for methicillin-resistant S. aureus (MRSA) bacteremia. rPCR, rapid polymerase chain reaction MRSA/SA blood culture test.

ProHealth Care

BD GeneOhm' StaphSR Assay Procedure Positive Blood Culture

15 minutes hands on

ProHealth Care

Table 2 Potential pharmaceutical cost savings with PNA-FISH

Case	Final Species ID	Initial Rx	Rx initiation until change (days)	Time to culture ID (days)	Time to PNAFISH ID (days)	Potential time saved w/ PNA-FISH (days)	Potential cost saved w/PNA-FISH ${ }^{\dagger}$
1	C. albicans	Caspofungin	6	3	0.3	2.7	\$1,093.50
2	C. glabrata	Fluconazole	2	5.4	0.6	4.8	Fluconazole changed to Caspofungin
3	C. parapsilosis	Caspofungin	5	3.6	0.7	2.9	\$1,174.50
1	CoNS	Vancomycin	3	3.7	0.8	2.9	\$58.00
2	CoNS	Vancomycin	4	2.1	0.2	1.9	\$38.00
3	CoNS	Vancomycin	5	3.2	0.3	2.9	\$58.00
4	CoNS	Vancomycin	2	0.8	0.7	0.1	\$2.00

${ }^{\dagger}$ Potential time saved w/PNA-FISH X AWP $=$ Potential cost saved w/PNA-FISH. AWP:
Fluconazole 400 mg po/day= $\$ 27.26$.
Caspofungin 50 mg IV/day $=\$ 405.00$.
Vancomycin $2 \mathrm{~g} /$ day=\$20.00.

ProHealth Care

