

The Laboratories Administration—Maryland's State Public Health Laboratory

Hexavalent Chromium Update at the Maryland State Public Health Laboratory

Chromium-6 goes from industrial tool to deadly carcinogen

Hexavalent chromium, also known as chromium-6 (Cr VI), is a chemical compound that contain the element chromium in the +6 oxidation state. It exists in the environment primarily in two valence forms, trivalent chromium (Cr III) which occurs naturally and hexavalent chromium (Cr VI) that is commonly produced in industrial processes. Both exhibit vastly different effects on human health.

Trivalent chromium is a mineral in multivitamins and a nutrient essential for sugar and lipid metabolism. On the other hand, the Environmental Working Group (EWG) and the National Toxicology Program report that hexavalent chromium is a "probable carcinogen." According to the EPA, hexavalent chromium is a known human carcinogen via inhalation exposure. Studies have shown that inhaled chromium-6 caused lung tumors in animals and resulted in an increased risk of lung cancer in humans. Also, studies have linked chromium-6 exposure to stomach and gastrointestinal cancers in humans and animals. It has also been found to cause damage to the gastrointestinal tract, kidneys, lymph nodes, and liver in animals.

Fetuses, infants, and children have higher sensitivity to carcinogenic chemicals. According to the National Academy of Sciences, children's developing organ systems are more vulnerable than those of adults to damage from toxic chemical exposures.

Industrial uses of hexavalent chromium compounds were widespread in some industries and manufacturing until the 1990s when it was banned in some applications. It is a common component in producing stainless steel and super-alloys; pigments in dyes, paints, inks, and plastics; anticorrosive agents in paints, primers, and other surface coatings; industrial cooling towers, and chromic acid electroplated onto metal parts to provide a decorative or protective coating. Chromium-6 gets into drinking water when it is discharged from steel and pulp mills, metal-plating, welding, and leather-tanning facilities. The chemical also can leach and pollute groundwater through erosion of soils and rock.

The EWG recently released results of a study that analyzed drinking water in 35 cities across the U.S., and detected hexavalent chromium in 31 out of 35 tap water samples. Samples were taken from these cities because local water utilities had previously detected potentially significant levels of hexavalent chromium. The report showed that samples tested from 25 cities including Bethesda, MD and Washington, DC had levels of hexavalent chromium higher than the "safe limit" proposed in California. (Continued on page 2) Newborn Screening Chief Consults in Tanzania

Sickle cell disease endemic in most sub-Saharan African countries

This past December, along with Jelili Ojodu, MPH, the U.S. Association of Public Health Laboratories (APHL) Newborn Screening and Genetics Director, I spent several days in Tanzania at the request of APHL's Global Health Program.

The trip to Tanzania was a part of an APHL initiative to collaborate with developing countries building their laboratory capacities in newborn screening (NBS). Sickle cell testing is serving as a model. Currently, Tanzania does not offer NBS, and sickle cell disease (SCD) is endemic in the country (and in most sub-Saharan African countries). Hence the testing for hemoglobinopathies is essential in developing a NBS test menu. Tanzania has one of the highest number of births of SCD individuals in the world, estimated to be between 8,000 and 11,000 per year.

On our first day in Tanzania, we met with Dr. Julie Makani, (a Wellcome Trust Training

(Continued on page 2)

January 2011 Volume 15, Number 1

GRIIGAL LINK

PRODUCTION MANAGER

Georgia Corso

EDITORIAL BOARD

Jack DeBoy, Dr. P. H. Prince Kassim, Ph.D. Fizza Majid, Ph.D. Robert Myers, Ph.D. Maria Paz Carlos, DVM, Ph.D. Jafar Razeq, Ph.D. Jim Svrjcek, B.A. Michael Wajda, M.S., J.D. Chengru Zhu, Ph.D.

LABORATORIES ADMINISTRATION

Director Jack DeBoy, Dr.P.H.

Deputy Director for Scientific Programs

Robert Myers, Ph.D.

Deputy Director for Administrative and Regulatory Programs

Michael Wajda, M.S., J.D.

TECHNICAL QUESTIONS

Questions concerning technical content of this newsletter may be referred to Dr. Jack DeBoy at 410-767-6100

The Critical Link is published monthly by the staff of the Laboratories Administration Department of Health & Mental Hygiene 201 W. Preston Street Baltimore, Maryland 21201 (Phone 410-767-6909) (Continued from page 1) Hexavalent Chromium Update at the Maryland State Public Health Laboratory

The five cities with the highest levels of hexavalent chromium were Norman, OK; Honolulu, HI; Riverside, CA; Madison, WI; and San Jose, CA.

Currently, there is no enforceable federal standard requiring utilities to test for hexavalent chromium in drinking water. However, the EPA has a legally enforceable standard for "total chromium" at 100 parts per billion (ppb) that require utilities to test water even though the data does not show the precise contribution from chromium-6. A total chromium test is a less specific measurement that includes trivalent and hexavalent chromium.

California has a legal limit of 50 ppb for total chromium in drinking water. The California EPA has *proposed* a "public health goal" of 0.06 ppb as a standard for maximum concentration of hexavalent chromium in tap water to reduce the risk of cancer. California is the only state that requires water utilities to test for hexavalent chromium.

The Laboratories Administration's Division of Environmental Chemistry analyzes water samples. Water samples are usually submitted

(Continued from page 1) Newborn Screening Chief Consults in Tanzania

Fellow at the Muhimbili University of Health and Allied Sciences) and her team. They are currently involved in a study that will provide a better understanding of the molecular, genetic, and environmental mechanisms determining the severity and course of SCD in Africa. Dr. Makani's laboratory has been using electrophoresis, HPLC, and molecular testing in their study. The day included a tour of the laboratory facilities at the Muhimbili University of Health and Allied Sciences. The laboratory was well organized and staff had a good understanding of QA/QC.

On the second day, we were surprised to be ushered into a lecture hall filled with medical students, postgraduate students, and the Department of Pediatrics of the Muhimbili University of Health and Allied Sciences staff. They all came to hear us discuss population newborn screening with special emphasis on SCD. There was a lot of enthusiasm regarding the prospect of NBS in Tanzania.

Later that morning, we met with a group of stakeholders with vested interests in the newborn screening initiative. These stakeholders included representatives from Muhimbili Hospital, Muhimbili University of Health and Allied Sciences, Family and Child Health, Ministry of Health, CDC Tanzania, and by the Maryland Department of the Environment. The analytical method used is sensitive, accurate, precise, and has demonstrated a wide linear dynamic range. It has the capacity for rapid throughput in addressing environmental public health needs. The target compound can be measured at very low concentration down to one to two parts per billion ranges.

Program Officers or Sanitarians who suspect hexavalent chromium contamination of a site or matrix should contact the Trace Metals Laboratory at 410-767-6944 or 410-767-4388 for guidance on sample collection, preservation, storage, and transport to the laboratory.

This article is prepared by Taiyin Wei and Deborah Miller-Tuck of the Division of Environmental Chemistry

References

- ¹ <u>www.epa.gov/ttnatw01/hlthef/ chromium.html</u>
- www.washingtonpost.com/wp-dyn/content/ article/2010/12/18/AR2010121802810.html
 http://news.yahoo.com/s/ap/20101222/ap_on_re_us/
- http://news.yahoo.com/s/ap/20101222/ap_on_re_us us_contaminated_drinking_water
- www.osha.gov/SLTC/hexavalent chromium/index.html
 www.osha.gov/dts/chemicalsampling/ data/

CH_228697.html

the APHL. NBS implementation was discussed at length and the formation of an advisory committee was strongly suggested to collectively move the initiative forward. Participants determined it would be possible to start the country's newborn screening initiative in Dar es Salaam, Tanzania for SCD in the near future. The meeting concluded with an understanding that the APHL will follow up with Dr. Makani and continue working to support their training needs. APHL will also work with the Muhimbili University of Health and Allied Sciences and the Ministry of Health in Tanzania to provide the start up testing materials and platforms for sickle cell disease in newborns.

In the afternoon, we visited the Ministry of Health laboratories. They were well equipped, including a state-of-the-art training laboratory. It is conceivable that continuing collaboration will lead to implementation of NBS in 6-8 months.

For me, this was also an opportunity to return to Tanzania, the country of my birth, to visit with friends and relatives, and to again speak Swahili, the language I learned growing up in Tanzania. I especially enjoyed being able to give something back to Tanzania after emigrating many years ago, and look forward to the possibility of returning to provide additional NBS training sometime in the future.

This article written by Dr. Fizza Majid.

Reported by the Laboratories Administration covering results from the month of

November 2010

ENTERIC BACTERIOLOGY

GENUS	SERO	/AR	
SEX	AGE	#	JURISDICTION
CAMPYI	OBAC	TER	
М	0	1	OUT OF STATE
CAMPYI	OBAC	TER JI	EJUNI
U	82	1	BALTIMORE
F	71	1	BALTIMORE
Μ	58	1	BALTIMORE
Μ	41	1	BALTIMORE
Μ	3	1	BALTIMORE
Μ	22	1	CHARLES
F	19	1	OUT OF STATE
Μ	48	1	OUT OF STATE
ESCHER	RICHIA	COLI,	SEROTYPE O103:H2
Μ	41	1	ANNE ARUNDEL
Μ	35	1	BALTIMORE CITY
F	13	1	OUT OF STATE
F	2	1	OUT OF STATE
ESCHER	RICHIA	COLI,	SEROTYPE 0111
F	28	1	PRINCE GEORGE'S
ESCHER	RICHIA	COLI,	SEROTYPE 0111:H8
Μ	2	1	OUT OF STATE
ESCHER	RICHIA	COLI,	SEROTYPE 0157:H7
U	9	1	ANNE ARUNDEL
F	9	1	BALTIMORE CITY
F	16	1	CARROLL
U	13	1	CARROLL
F	22	1	MONTGOMERY
Μ	22	1	MONTGOMERY
F	1	2	OUT OF STATE
ESCHER	RICHIA	COLI,	
SEROTY	YPE O1	57:NO	N-MOTILE
Μ	29	1	BALTIMORE
ESCHER	RICHIA	COLI,	SEROTYPE O26:H11
Μ	1	1	OUT OF STATE
ESCHER	RICHIA	COLI,	SEROTYPE O45:H2
F	24	1	ANNE ARUNDEL
F	16	1	OUT OF STATE

F	26	1	OUT OF STATE
F	26	1	OUT OF STATE
М	11	1	OUT OF STATE
SALMO	NELLA		
F	61	1	ANNE ARUNDEL
M	1	1	ANNE ARUNDEL
F	31	1	BALTIMORE
М	10	1	BALTIMORE
F	18	1	BALTIMORE CITY
F	22	1	CALVERT
F	22	1	CALVERT
F	1	1	CARROLL
F	67	1	MONTGOMERY
М	0	2	MONTGOMERY
U	1	1	OUT OF STATE
F	46	1	OUT OF STATE
F	45	1	OUT OF STATE
F	31	1	OUT OF STATE
F	1	1	OUT OF STATE
F	0	1	OUT OF STATE
М	49	1	OUT OF STATE
Μ	3	1	OUT OF STATE
М	2	2	OUT OF STATE
Μ	0	1	OUT OF STATE
F	77	1	PRINCE GEORGE'S
F	0	1	WASHINGTON
F	91	1	WASHINGTON
SALMO	NELLA S	SER. 4	4,12:I:-
М	68	1	PRINCE GEORGE'S
SALMO	NELLA S	SER. 4	4,5,12:I:-
U	1	1	BALTIMORE CITY
F	2	1	BALTIMORE CITY
F	31	1	OUT OF STATE
F	10	1	OUT OF STATE
Μ	36	1	OUT OF STATE
Μ	3	1	OUT OF STATE
Μ	1	2	OUT OF STATE
SALMO	NELLA S	ER. /	AGONA
Μ	18	1	BALTIMORE
SALMO	NELLA S	SER. I	DERBY
Μ	22	1	WASHINGTON
SALMO	NELLA S	SER. I	ENTERITIDIS
U	0	1	ANNE ARUNDEL
F	0	1	ANNE ARUNDEL
U	67	1	BALTIMORE
F	85	2	BALTIMORE
F	38	1	BALTIMORE
U	0	3	BALTIMORE CITY
U	33	2	BALTIMORE CITY
U	5	1	BALTIMORE CITY
F	0	1	BALTIMORE CITY
F	73	1	BALTIMORE CITY
F	57	1	BALTIMORE CITY
F	52	1	BALTIMORE CITY
F	48	1	BALTIMORE CITY
F	38	1	BALTIMORE CITY
F	18	1	BALTIMORE CITY
M	0	2	BALTIMORE CITY
M	70	1	BALTIMORE CITY
	10		
M	78 60	1	BALTIMORF CITY
M M	78 60 58	1 1	BALTIMORE CITY BALTIMORE CITY
M M M	78 60 58 57	1 1 1	BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY
M M M M	78 60 58 57 48	1 1 1 2	BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY
M M M M	78 60 58 57 48 43	1 1 1 2 1	BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY
M M M M M	78 60 58 57 48 43 33	1 1 2 1 1	BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY

		~		
	М	2	1	BALTIMORE CITY
	М	1	4	BAI TIMORE CITY
	N.4			
	IVI	0	1	BALTINORE CIT
	М	81	1	MONTGOMERY
	U	4	1	OUT OF STATE
	F	24	1	OUT OF STATE
	-	27		
	F	23	1	OUT OF STATE
	F	9	1	OUT OF STATE
	F	6	1	OUT OF STATE
		Š		
	г	3	1	OUT OF STATE
	М	44	1	OUT OF STATE
	М	43	1	OUT OF STATE
	М	30	1	OUT OF STATE
		55		OUT OF STATE
	IVI	1	1	OUT OF STATE
	М	3	1	OUT OF STATE
	М	52	2	WASHINGTON
	N.4	6	-	WASHINGTON
	IVI	0	1	WASHINGTON
	F	55	1	WICOMICO
	F	16	1	WICOMICO
<u>م</u> ۱			QED.	
SAL		NELLA	SER.	HEIDELBERG
	F	0	1	UNKNOWN
SAL	MON.	IELLA	SER.	INFANTIS
	М	40	1	BAI TIMORE
	N /	-00	4	
	IVI	23	1	BALTIMORE CITY
	F	72	1	MONTGOMERY
SAL	MON	JELLA	SER.	ISRAEL
U /	E	0	1	
	_	0		BALTINORE CITI
	F	19	1	BALTIMORE CITY
SAL	MON.	IELLA	SER.	JAVIANA
	F	4	1	ANNE ARUNDEI
		45		
	IVI	15		BALTIMORE
	F	15	1	BALTIMORE CITY
	F	2	1	MONTGOMERY
	М	31	1	MONTGOMERY
		51		MONTOOMERT
	IVI	5	1	MONIGOMERY
	U	4	1	OUT OF STATE
	F	32	1	OUT OF STATE
	E	22	. 1	
	<u> </u>	22		OUT OF STATE
	F	3	1	OUT OF STATE
	F	15	1	WICOMICO
	М	50	1	WICOMICO
~ ^ 1			0	
SAL	IVIOr	NELLA	SER.	LITCHFIELD
	F	26	1	BALTIMORE CITY
	М	20	1	BAI TIMORE CITY
C ^ 1			огр	
SAL		NELLA	SER.	
	M	0	1	BALTIMORE
SAL	MON	IELLA	SER.	MUENSTER
	М	76	1	HARFORD
	E.	. C	. 1	
~	Г 			OUT OF STATE
SAL	MON	JELLA	SER.	NESSZIONA
	Μ	42	1	BALTIMORE
	F	57	1	BAI TIMORE
		01		
	F	6	1	BALTIMORE
	F	4	3	BALTIMORE
	F	4	1	BAI TIMORE
	г	0		BALTIVIORE
	М	15	1	BALTIMORE
	М	10	1	BALTIMORE
S۵I	MON		SEP	NEWPORT
		•A		
	IVI	4	1	WUNIGUWERY
	F	86	2	OUT OF STATE
	F	10	1	OUT OF STATE
	N/	21		
		51	<u> </u>	UUT OF STATE
	F	2	1	WICOMICO
	Μ	49	1	WICOMICO
	М	3	1	WICOMICO
	1 1 1			

SALMONELLA SER. ORANIENBURG 86 1 OUT OF STATE F SALMONELLA SER. PARATYPHI A 0 2 BALTIMORE CITY Μ SALMONELLA SER. PARATYPHI B VAR L(+) TARTRATE + Μ 29 HARFORD 1 F 0 1 OUT OF STATE F 0 1 PRINCE GEORGE'S Μ 43 1 PRINCE GEORGE'S М 4 1 WASHINGTON SALMONELLA SER. SAINTPAUL F 55 1 BALTIMORE Μ 55 1 BALTIMORE Μ 43 1 BALTIMORE SALMONELLA SER. SCHWARZENGRUND ANNE ARUNDEL Μ 1 1 Μ 7 BALTIMORE 1 SALMONELLA SER. THOMPSON F 74 1 CARROLL Μ 67 1 OUT OF STATE SALMONELLA SER. TYPHIMURIUM F 22 1 BALTIMORE F BALTIMORE 1 1 F BALTIMORE CITY 3 1 Μ 39 1 FREDERICK Μ 2 FREDERICK 1 F 17 1 HARFORD Μ 47 HARFORD 1 F MONTGOMERY 1 1 F OUT OF STATE 17 1 F OUT OF STATE 2 1 Μ 64 1 OUT OF STATE OUT OF STATE Μ 6 1 OUT OF STATE Μ 1 1 F 24 1 PRINCE GEORGE'S F 7 TAI BOT 1 6 WASHINGTON М 1 SALMONELLA SER. WELTEVREDEN MONTGOMERY 77 Μ 1 SHIGELLA FLEXNERI II:3,4 Μ 23 1 MONTGOMERY SHIGELLA SONNEI BALTIMORE F 58 1 F BALTIMORE 6 2 F 5 1 BALTIMORE CITY F OUT OF STATE 2 1 Μ 59 1 OUT OF STATE TOTAL 199

ISOLATES - REFERENCE

GENUS SPECIES SOURCE JURISDICTION # CORYNEBACTERIUM SPECIES BREAST 1 ALLEGANY KLEBSIELLA PNEUMONIAE 1 BALTIMORE CITY 11 LISTERIA MONOCYTOGENES BLOOD 1 FREDERICK TOTAL 3

ISOLATES - MI	SCELLANEOUS
GEINUS SPECIES	
SOURCE #	≠ JURISDICTION
ENTEROBACTER /	AMNIGENUS BIOGROUP
II	
BLOOD 1	BALTIMORE CITY
ESCHERICHIA CO	LI
VAGINAL 1	MONTGOMERY
GARDNERELLA VA	GINALIS
	SOMERSEI
GRAM-NEGATIVE	BACILLUS
BLOOD 2	2 BALTIMORE CITY
KLEBSIELLA PNEU	JMONIAE
SPUTUM 1	WASHINGTON
PANTOEA AGGLO	MERANS
CSF 1	BALTIMORE CITY
CSF	BALTIMORE CITY
SPUTUM 2	2 WASHINGTON
PSEUDOMONAS P	UTIDA
BRAIN 1	BALTIMORE CITY
STAPHYLOCOCCU	JS AUREUS
WOUND 2	2 BALTIMORE CITY
NASAI	CARROLI
	SOMERSET
	SOMERSET
STAPHYLOCOCCU	
COAGULASE NEG	
BLOOD 4	A BALTIMORE CITY
STREPTOCOCCUS	S, ALPHA-HEMOLYTIC
BLOOD 1	BALTIMORE CITY
MOUTH 1	CARROLL
STREPTOCOCCUS	S
	ALLEGANT
STREPTOCOCCUS	o,
BETA HEMOLYTIC	NON-GROUP A
THROAT 12	2 ALLEGANY
STREPTOCOCCUS	5,
BETA HEMOLYTIC	GROUP B
VAGINAI	
	PRINCE GEORGE S
VAGINAL 5	PRINCE GEORGE'S
VEILLONELLA SPE	CIES
BLOOD 1	BALTIMORE CITY
TOTAL 53	5
SEXUALLY TRA	NSMITTED DISEASES
GENUS SPECIES	
SEX #	JURISDICTION
SYPHILIS SEROLO)GY
F 1	
M 1	
M 5	
F 12	
M 97	
IVI 1 M 4	
IVI 1 M 1	
171	

F M F M	7 4 14 33 1 1	MONTGOMERY MONTGOMERY PRINCE GEORGE'S PRINCE GEORGE'S WASHINGTON WORCESTER
TOTAL	111	
CHLAMY	DIA TRA	ACHOMATIS
CHTALE CH	'DIA TR' 9 2 1 19 3 26 13 2 2 2 3 17 10 3 1 6 2 3 3 7 1 2 2 2 3 1 3 2 5 5 2 2 3 5 8 7 1 2 2 2 3 7 1 2 2 2 3 7 1 2 2 2 3 7 1 3 2 6 1 3 2 6 1 3 2 6 1 3 2 6 1 3 2 1 2 2 1 1 9 3 2 6 1 3 2 1 2 2 1 1 9 3 2 6 1 3 2 1 2 2 1 1 9 3 2 6 1 3 2 1 2 2 1 1 9 3 2 6 1 3 2 1 2 2 1 1 9 3 2 6 1 3 2 1 2 2 1 1 9 3 2 6 1 3 2 1 2 2 2 1 1 9 3 2 6 1 3 2 1 2 2 1 1 9 3 2 6 1 3 2 1 2 2 2 1 1 9 3 2 1 2 2 2 3 17 1 2 2 2 3 17 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 3 7 1 2 2 2 3 3 7 1 2 2 2 3 3 3 7 1 2 2 2 3 3 3 5 5 5 2 2 3 3 5 5 5 2 2 3 3 5 5 5 2 2 3 3 5 5 5 2 2 3 3 5 5 5 2 2 3 3 5 5 5 2 2 2 3 3 5 5 2 2 2 3 5 5 5 2 2 2 3 5 5 5 2 2 2 3 3 5 5 5 2 2 2 3 5 5 5 2 2 2 3 5 5 5 2 2 2 3 5 5 5 2 2 2 3 5 5 2 2 2 3 5 5 2 2 2 3 5 5 5 2 2 2 3 5 5 5 2 2 2 3 5 5 2 2 2 3 5 5 5 5	ACHOMATIS ALLEGANY ALLEGANY ALLEGANY ALLEGANY ANNE ARUNDEL BALTIMORE BALTIMORE BALTIMORE BALTIMORE BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY BALTIMORE CITY CALVERT CALVERT CARVERT CAROLINE CARROLL CARROLL CECIL CECIL CHARLES CHARLES DORCHESTER DORCHESTER FREDERICK FREDERICK FREDERICK GARRETT HARFORD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD HOWARD KENT KENT KENT MONTGOMERY PRINCE GEORGE'S PRINCE GEORGE'S PRINCE GEORGE'S SAINT MARY'S SAINT MARY'S SAINT MARY'S SOMERSET TALBOT WASHINGTON WASHINGTON WICOMICO WICOMICO
M TOTAL	2 361	WORCESTER
NEISSEF F M F M M	RIA GON 1 1 7 15 1 25	IORRHOEAE BALTIMORE CITY MONTGOMERY PRINCE GEORGE'S PRINCE GEORGE'S WICOMICO

HOWARD

Μ

1

MYCOBACTERIOLOGY

ISOLATI		#	
SEA	AGE	#	JURISDICTION
MYCOB	ACTERI	UM A	BSCESSUS
MYCOR	64 ACTERI	1 I M A	
F	63	2	ANNE ARUNDEL
F	72	1	ANNE ARUNDEL
M	68	1	
F	₀∠ 64	1	BALTIMORE
F	74	1	BALTIMORE
F	77	1	BALTIMORE
F	46	1	BALTIMORE BALTIMORE CITY
F	47	1	BALTIMORE CITY
F	67	1	BALTIMORE CITY
M	37 60	2 4	BALTIMORE CITY
M	61	1	BALTIMORE CITY
М	78	2	BALTIMORE CITY
F	68 72	1	CARROLL
Г	72	1	CARROLL
F	54	1	MONTGOMERY
F	69	1	MONTGOMERY
M	67 28	2	MONIGOMERY PRINCE GEORGE'S
M	36	1	PRINCE GEORGE'S
Μ	37	1	PRINCE GEORGE'S
М	47	1	WASHINGTON
M	78 79	1 1	WASHINGTON
F	84	1	WICOMICO
М	57	1	WICOMICO
M	67	1	WICOMICO
MITCOB	48 48	1	BAI TIMORE
F	0	1	UNKNOWN
MYCOB.	ACTERI	UM F	ORTUITUM COMPLEX
M	81 25	1 1	BALTIMORE
M	31	1	OUT OF STATE
Μ	66	2	OUT OF STATE
M	37	1	PRINCE GEORGE'S
MYCOB	56 ACTERI	UM G	ORDONAE
M	69	1	BALTIMORE
М	26	1	PRINCE GEORGE'S
	57 ACTERI	1 I M K	
M	75	1	FREDERICK
MYCOB	ACTERI	UM N	IARINUM
M	69	1	WASHINGTON
MACOR	ACTERI 27		
M	44	1	BALTIMORE CITY
Μ	79	1	BALTIMORE CITY
M	25	1	
г М	ວວ 19	1 1	MONTGOMERY
M	32	1	MONTGOMERY
F	21	1	OUT OF STATE
F	3	1	OUT OF STATE
F	47	י 1	PRINCE GEORGE'S
MYCOB	ACTERI	UМ	
TUBERO	ULOSI	s çoi	
F	21 39	1 1	BALTIMORE CITY
	00		

TOTAL		107	
F	0	1	UNKNOWN
SCOTO	CHRON	/OGEN	NIC MYCOBACTERIA
F	39	1	PRINCE GEORGE'S
F	21	4	OUT OF STATE
U	49	2	MONTGOMERY
M	67	6	MONTGOMERY
M	49	1	MONTGOMERY
M	32	8	MONTGOMERY
F	44	8	MONTGOMERY
M	28	4	KENT
M	27	2	HOWARD
M	79	1	BALTIMORE CITY
M	69	1	BALTIMORE CITY
M	55	1	BALTIMORE CITY
M	44	1	BALTIMORE CITY
М	29	1	BALTIMORE CITY

MYCOBACTERIUM SUSCEPTIBILITY RESULTS

17 0 D	ISOLATES IDENTII RUG RESISTANT	FIED Strains Found		
#	JURISDICTION	DRUG(S)		
A TWO ISOLATES FROM THE SAME PATIENT ^B PROBABLE FOR M. BOVIS ^C MEETS CASE DEFINITION OF MULTI-DRUG TUBERCULOSIS (MDRTB)				

Mycobacterium tuberculo	osis complex consists of:
M. tuberculosis	M. africanum
M. bovis	M. microti
M. bovis, BCG	M. canettii

PARASITOLOGY

GENUS/SPECIES JURISDICTION # **BLASTOCYSTIS HOMINIS** 6 MONTGOMERY CHILOMASTIX MESNILI 4 MONTGOMERY CRYPTOSPORIDIUM 1 HOWARD DIENTAMOEBA FRAGILIS **3 MONTGOMERY** 1 MONTGOMERY ENDOLIMAX NANA 3 PRINCE GEORGE'S 2 MONTGOMERY 3 PRINCE GEORGE'S 1 MONTGOMERY 2 PRINCE GEORGE'S 1 MONTGOMERY ENTAMOEBA COLI 14 PRINCE GEORGE'S 1 MONTGOMERY ENTAMOEBA HARTMANNI 2 CARROLL ENTAMOEBA HISTOLYTICA/ ENTAMOEBA DISPAR COMPLEX 1 WICOMICO ENTEROBIUS VERMICULARIS 1 MONTGOMERY 1 CARROLL 1 CARROLL

GIARDIA LAMBLIA 1 MONTGOMERY 8 PRINCE GEORGE'S IODAMOEBA BÜTSCHLII 1 MONTGOMERY **1 BALTIMORE CITY** 1 MONTGOMERY **3 BALTIMORE** PLASMODIUM FALCIPARUM 2 BALTIMORE TOTAL 65

	0	
NON-COMMUNITY	263	67
TOTAL	263	67
FOOD PF	ROTECTIO	N
		TOTALS
FOOD		
NUMBER OF SAMPLE	:S NS [.]	41
CAMPYLOBACTER	SP.	C
CLOSTRIDIUM DIFF	ICILE	C
ENTEROCOCCUS		C
E. COLI		C
E. FAECALIS		C
LISTERIA SP.		C
MRSA		C
SALMONELLA SP.		C
VRE		C
CRABMEAT		
NUMBER OF SAMPLE	S	6
EXCEEDING STANDA	RDS ¹	C
NOTABLE PATHOGE	NS:	
LISTERIA INNOCUA		C
SHELLFISH		
NUMBER OF SAMPLE	S	3
EXCEEDING STANDA	RDS ²	C
TOTAL STANDARDS	EXCEEDED	C
SHELLFISH GROWI	NG WATERS	
NUMBER OF SAMPLE	S	358
TOTAL NUMBER OF	SAMPLES	408
STANDARDS		
¹ CRABMEAT FRESH ESCHERICHIA COLI AT STANDARD PLATE COU	⁻ < 36 MPN/100 NT AT < 100	GRAMS
ESCHERICHIA COLI AT STANDARD PLATE COU ² SHELLFISH FECAL COLIFORMS AT	<pre>< 36 MPN/100 NT AT < 100 </pre>	GRAMS

STANDARD PLATE COUNT AT < 500,000 PER GRAM

VIRUS ISOLATION

ISOLATI SEX	E AGE	#	JURISDICTION
ADENO	/IRUS		
U	50	1	BALTIMORE
HERPES	S SIMPL	EX VI	RUS TYPE 1
F	18	1	WICOMICO
HERPES	S SIMPL	EX VI	RUS TYPE 2
F	80	1	CAROLINE
PARAIN	FLUENZ	za vif	RUS 1
F	18	1	ALLEGANY
PARAIN	FLUENZ	za vif	RUS 2
F	1	1	BALTIMORE

5

TOTAL

VIRAL POLYMERASE **CHAIN REACTION (PCR)**

ISOLATE SEX AGE JURISDICTION # HERPES SIMPLEX VIRUS TYPE 1 F 16 1 ANNE ARUNDEL F 30 1 ANNE ARUNDEL F 18 BALTIMORE 1 F 23 BALTIMORE 1 Μ 22 1 BALTIMORE CITY Μ 24 BALTIMORE CITY 1 Μ 24 CARROLL 1 F FREDERICK 21 1 F 39 1 FREDERICK F PRINCE GEORGE'S 20 1 F 23 1 PRINCE GEORGE'S F 35 1 PRINCE GEORGE'S Μ 19 1 PRINCE GEORGE'S Μ 20 PRINCE GEORGE'S 1 F 18 1 WICOMICO WICOMICO F 20 1 HERPES SIMP LEX VIRUS TYPE 2 F 19 2 ALLEGANY F 23 1 ANNE ARUNDEL ANNE ARUNDEL Μ 21 1 F 16 1 BALTIMORE F 22 1 BALTIMORE F 26 BALTIMORE 1 F 34 1 BALTIMORE 25 BALTIMORE CITY U 1 U 35 BALTIMORE CITY 1 F 0 BALTIMORE CITY 1 F BALTIMORE CITY 17 3 F 21 1 BALTIMORE CITY F 23 1 BALTIMORE CITY F 24 1 BALTIMORE CITY F 25 3 BALTIMORE CITY F 30 1 BALTIMORE CITY F BALTIMORE CITY 34 2 F 36 1 BALTIMORE CITY F BALTIMORE CITY 40 1 F 46 1 BALTIMORE CITY Μ 0 1 BALTIMORE CITY Μ 21 2 BALTIMORE CITY Μ 23 2 BALTIMORE CITY Μ 24 2 BALTIMORE CITY

	М	26	1	BALTIMORE CITY
	Μ	46	1	BALTIMORE CITY
	М	61	1	BALTIMORE CITY
	М	62	1	BALTIMORE CITY
	F	23	1	DORCHESTER
	F	30	1	HOWARD
	М	25	1	MONTGOMERY
	F	21	1	PRINCE GEORGE'S
	F	22	2	PRINCE GEORGE'S
	F	23	1	PRINCE GEORGE'S
	F	30	1	PRINCE GEORGE'S
	F	31	1	PRINCE GEORGE'S
	М	20	2	PRINCE GEORGE'S
	М	25	1	PRINCE GEORGE'S
	М	26	1	PRINCE GEORGE'S
	М	30	1	PRINCE GEORGE'S
	F	20	1	WICOMICO
	М	21	1	WICOMICO
	Μ	31	1	WICOMICO
INFL	UENZ	A A(H3	3)	
	М	0	1	ANNE ARUNDEL
	F	0	2	BALTIMORE CITY
	Μ	70	1	PRINCE GEORGE'S

TOTAL

VIRAL HEPATITIS

75

ORGANISM		
# S	PECI	MENS
	# P0	OSITIVES
		JURISDICTION
HEPATITIS B		
40	0	ALLEGANY
124	0	ANNE ARUNDEL
35	0	BALTIMORE
270	2	BALTIMORE CITY
5	0	CALVERT
12	0	CARROLL
92	1	CECIL
6	0	CHARLES
46	0	FREDERICK
15	0	GARRETT
33	0	HARFORD
16	0	HOWARD
357	3	MONIGOMERY
290	2	PRINCE GEORGE'S
3	0	QUEEN ANNE'S
17	0	SAINT MARY'S
3	0	SOMERSEI
15	0	TALBOT
2	0	
35	0	WASHINGTON
53	1	WICOMICO
SUBTOTAL		
1.469	9	
1,400	Ŭ	
HEPATITIS C		
36	2	ALLEGANY
147	30	ANNE ARUNDEL
46	1	BALTIMORE

CALVERT

CARROLL

CECIL CHARLES

5

14 1

76 11

10 0

1

2,455 105

RABIES SOURCE # JURISDICTION CAT 1 BALTIMORE SAINT MARY'S FOX 1 1 WASHINGTON RACCOON ANNE ARUNDEL 1 1 BALTIMORE 4 BALTIMORE CITY FREDERICK 1 HARFORD 1 HOWARD 1 1 PRINCE GEORGE'S QUEEN ANNE'S 2 1 SOMERSET WICOMICO 1 2 WORCESTER SKUNK GARRETT 1 TOTAL POSITIVES 20 TOTAL SPECIMENS 234

CHLAMYDIOPHILIA PSITTACI (CHLAMYDIA)

REPORTED QUARTERLY NO REPORT THIS MONTH

CD4 FLOW CYTOMETRY WORKLOAD

REPORTED QUARTERLY NO REPORT THIS MONTH

BALTIMORE CITY

203

41

NEWBORN & CHILDHOOD SCREENING PRESUMPTIVE POSITIVES

DISORDERS	#
PHENYLKETONURIA (PKU)	0
MAPLE SYRUP URINE DISEASE (MSUD)	16
HOMOCYSTINURIA	12
TYROSINEMIA	8
ARGININEMIA	0
CITRULLINEMIA	0
GALACTOSEMIA	0
BIOTINIDASE DEFICIENCY	12
HYPOTHYROIDISM	65
HEMOGLOBIN -DISEASE	15
HEMOGLOBIN -BENIGN	439
CONGENITAL ADRENAL HYPERPLASIA (CAH)	4
CYSTIC FIBROSIS	0
FATTY ACID OXIDATIONS	4
ORGANIC ACIDEMIAS	6
ACYLCARNITINE - BORDERLINE	6
ACYLCARNITINE - OTHERS	0
MONTHLY TOTALS	
# OF SPECIMENS SCREENED	11.701
NUMBER OF TESTS	68.171
% UNSATISFACTORY SPECIMENS	3.9
2010 YEAR-TO-DATE CONFIRMED CASES	
CONDITIONS # CON	FIRMED
MEDIUM CHAIN ACYL-COA DEHYDROGENASE DEFICIENCY (MCAD)	5
SHORT CHAIN ACYL-COA DEHYDROGENASE DEFICIENCY (SCAD)	10
VERY LONG-CHAIN ACY-Co-A DEHYDROGENASE DEFICIENCY(VI CAD)	1
	1
	2
S-INETHYLORIC A CIDENILA (MMAA)	3
	1
GLUTARIC ACIDURIA TYPE 1 (GA-1)	1
BRANCHED CHAIN KETOACIDOSIS (BCK/MSUD)	1
GALACTOSEMIA, CLASSICAL	1
GALACTOSE EPIMERASE DEFICIENCY	2
GALACTOSEMIA - VARIANT -DG	4
GALACTOSEMIA - UNKNOWN VARIANT	1
PARTIAL BIOTINIDASE DEFICIENCY	2
BIOTINIDASE DEFICIENCY	1
PROBABLE BIOTINIDASE CARRIER	4
PROBABLE GN	1
CONGENITAL ADRENAL HYPERPLASIA-SALT WASTING	2
CONGENITAL ADRENAL HYPERPLASIA-UNCLASSIFIED	1
HYPOPITUITARISM	1
HYPOTHYROIDISM - PRIMARY	22
OTHER HYPOTHYROIDISM	11
TBG DEFICIENCY	11
SICKLE CELL DISEASE -SS	37
SICKLE CELL DISEASE -SC	25
SICKLE CELL DISEASE -S BETA THALASSEMIA	9
SICKLE CELL DISEASE- BETA 0 THALASSEMIA	1
SICKLE CELL DISEASE-SV	1
	1
	1
	1
TRANSIENT TYROSINEMIA	5
	0

ENVIRONMENTAL CHEMISTRY

SAMPLE TYPES	# TESTED # NON- COMPLIAN
ASBESTOS	
AIR	0 0
BULK	0 3
AIR QUALITY	
PM _{2.5}	0 246
RADIATION	
AIR/CHARCOAL FILTER	RS 0 72
MILK	0 0
WIPES	0 39
RAW WATER	0 8
VEGETATION	0 0
OTHER	0 2
DRINKING WATER	
METALS	
COMMUNITY	15 27
NON-COMMUNITY	8 21
PRIVATE WELLS	29 119
PESTICIDES & PCBs	
COMMUNITY	0 155
NON-COMMUNITY	0 24
PRIVATE WELLS	0 0
VOLATILE ORGANIC C	OMPOUNDS
COMMUNITY	5 162
NON-COMMUNITY	0 73
PRIVATE WELLS	0 25
RADIATION	
COMMUNITY	2 35
NON-COMMUNITY	0 4
PRIVATE WELLS	0 23
INORGANICS	
COMMUNITY	0 37
NON-COMMUNITY	5 48
PRIVATE WELLS	4 110
FOOD CHEMISTRY	
SUSPECTED TAMPERING	0 0
MICROSCOPIC FILTH	0 0
LABELING	0 0
SURVEILLANCE	0 76
CHEMICAL CONTAMINATION	0 0
TOTAL	00 4 000
IUTAL	68 1,309

Critical Link of Georgia Corso, Room L-15 J. Mehcen Joseph Public Health Laboratory Department of Health & Mental Hygiene 201 West Preston Street Baltimore, Maryland 21201

WAILING LABEL

HIV-1 RNA COPIES/ML	<10 ³	10 ³ —10 ⁴	10 ⁴ 10 ⁵	>10 ⁵	TOTALS
ALLEGANY	8	1	0	0	9
FREDERICK	2	1	1	0	4
MONTGOMERY	41	7	6	3	57
PRINCE GEORGE'S	80	8	7	4	99
WICOMICO	3	0	0	0	3
SUBTOTALS	134	17	14	7	172
DEPARTMENT OF CORRECTIONS	6	0	0	0	6
TOTALS	140	17	14	7	178

VIRAL LOAD SPECIMENS

HIV ANTIBODY SCREENING					
SUBMITTER	TOTAL SPECIMENS	# EIA POSITIVE	% EIA POSITIVE	# WB POSITIVE	% WB POSITIVE
CORRECTION FACILITY JUVENILE	81	1	1.23%	1	100.00%
CORRECTIONAL INSTITUTIONS	177	1	0.56%	0	0.00%
FAMILY PLANNING (NON-GOVERNMENT)	165	0	0.00%	0	0.00%
HEALTH CENTERS (NON-GOVERNMENT)	556	43	7.73%	42	97.67%
HLTH DEPT, NON-STD, FAMILY PLANNING	330	0	0.00%	0	0.00%
HLTH DEPT, NON-STD, OB/GYN	73	2	2.74%	1	50.00%
HLTH DEPT, NON-STD, OTHER	715	48	6.71%	44	91.67%
HLTH DEPT, STD CLINICS	950	12	1.26%	10	83.33%
HOSPITAL, OTHER	119	7	5.88%	7	100.00%
HOSPITAL, PUBLIC	27	0	0.00%	0	0.00%
LABORATORIES (NON-HOSPITAL)	289	8	2.77%	4	50.00%
PEDIATRIC - CHILD HEALTH	5	0	0.00%	0	0.00%
PRIVATE STUDENT HEALTH CTRS	35	0	0.00%	0	0.00%
PUBLIC STUDENT HEALTH CTRS	274	2	0.73%	0	0.00%
TOTALS	3,796	124	3.27%	109	87.90%