

Trials and Tribulations of Proficiency Testing for Malonylcarnitine (C3DC) in Dried-Blood Spots Víctor R. De Jesús, PhD

Team Lead, Biochemical Mass Spectrometry Laboratory Newborn Screening and Molecular Biology Branch

APHL November 2011

National Center for Environmental Health

Division of Laboratory Sciences

Malonylcarnitine (C3DC): The beginning

- Dicarboxylic acylcarnitine biomarker used to screen for malonic acidemia (MAL)
 - IEM caused by congenital deficiency of malonyl-CoA decarboxylase
 - (2nd target panel)
- Introduced into NSQAP PT panels in 2008
- NSQAP PT materials include
 41 of the 42 disorders
 detectable by tandem mass
 spectrometry (MS/MS)

Table 2 Newborn screening panel: core panel and secondary targets									
MS/MS									
Acylcarnitines		Amino acids							
9 OA	5 FAO	6 AA	3 Hb Pathies	6 Others					
CORE PANEL									
IVA	MCAD	PKU	Hb SS*	CH					
GAI	VLCAD	MSUD	Hb S/βTh*	BIOT					
HMG	LCHAD	HCY*	Hb S/C*	CAH*					
MCD	TFP	CIT		GALT					
MUT*	CUD	ASA		HEAR					
3MCC*		TYR I*		CF					
Cbl A,B*									
PROP									
BKT									
SECONDARY TARGETS									
6 OA	8 FAO	8 AA	1 Hb Pathies	2 Others					
Cbl C,D*	SCAD	HYPER-PHE	Var Hb*	GALK*					
MAL	GA2	TYR II		GALE					
IBG	M/SCHAD	BIOPT (BS)							
2M3HBA	MCKAT	ARG							
2MBG	CPT II	TYR III							
3MGA	CACT	BIOPT (REG)							
	CPT IA	MET							
	DE RED	CIT II							

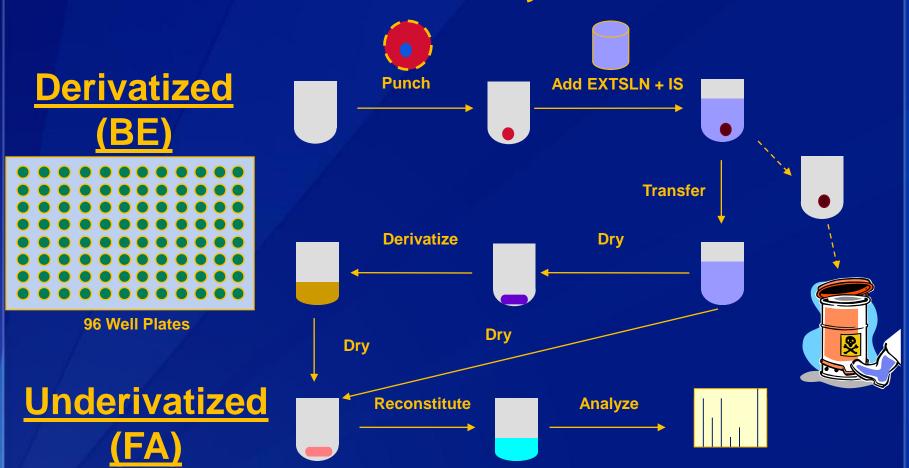
NOTE: Codes are as follows: OA, disorders of organic acid metabolism; FAO, disorders of fatty acid metabolism; AA, disorders of amino acid metabolism; Hb Pathies, hemoglobinopathies.

* Identifies conditions for which specific discussions of unique issues are found in the main report.

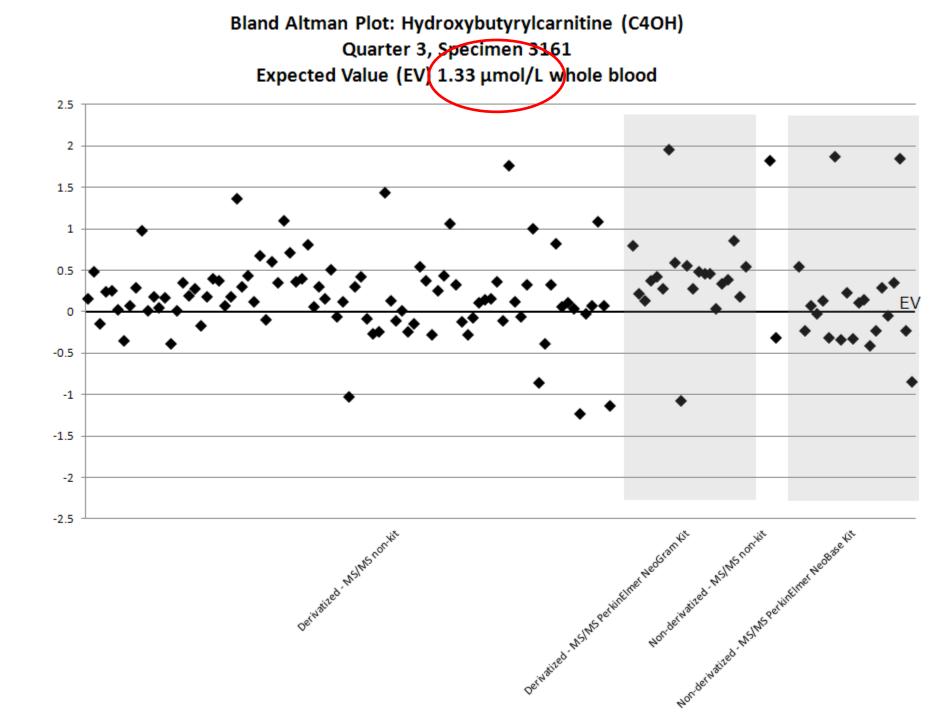
And then there were issues with C3DC analysis...

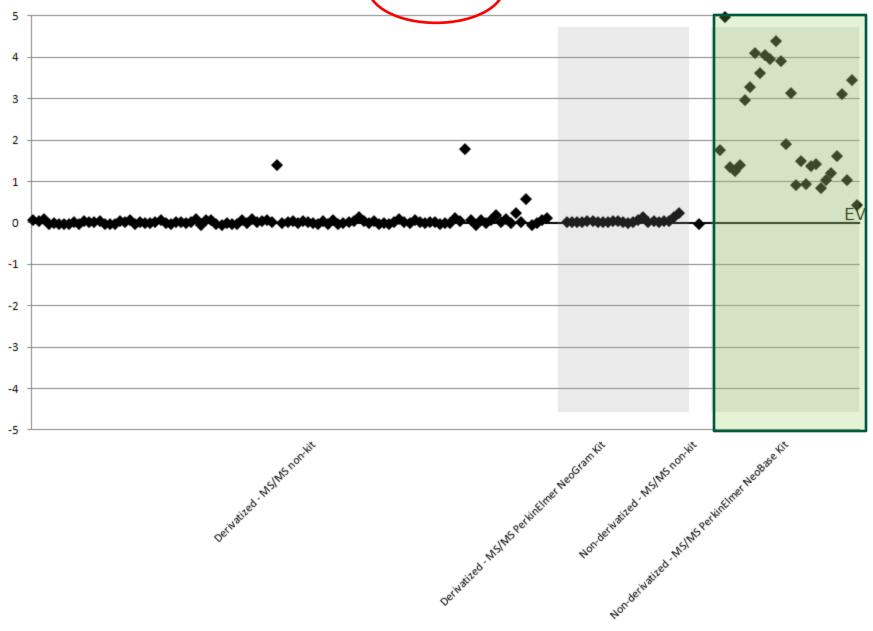
Non-derivatized assay
PT misses ensued

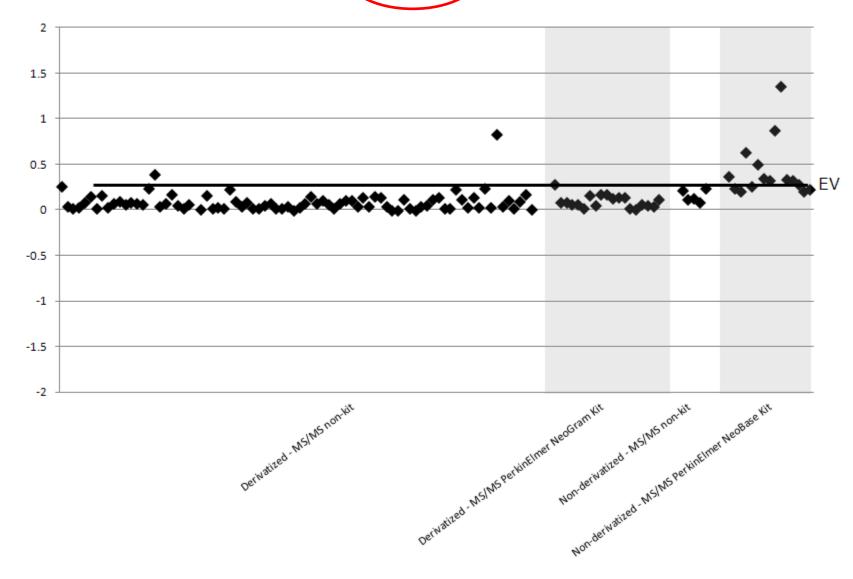
- Kit-, non-kit-based
- Lower semi-quantitative results

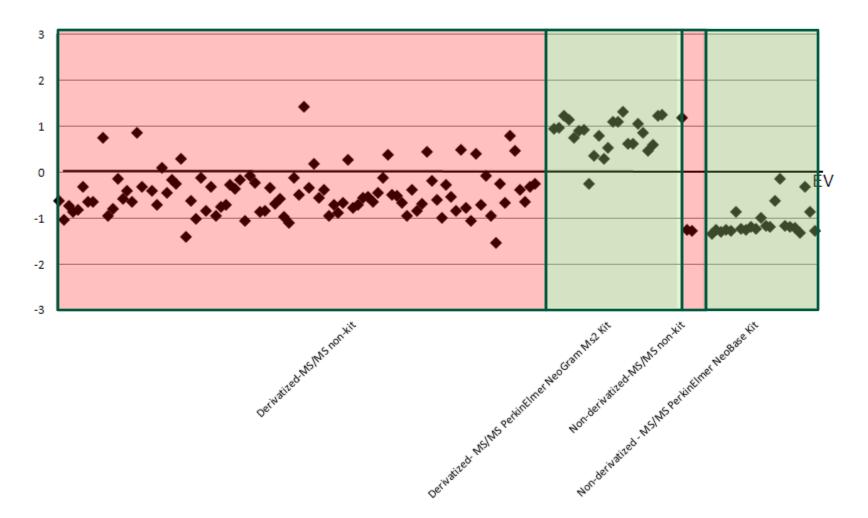

Hydroxybutyrylcarnitine (C40H)

- Introduced into NSQAP PT panels in 2010
- Isobaric interference
 - m/z 248


- Increased corrective action reports
- General feeling: WTH?


MS/MS NBS Assay Scheme


De Jesús VR, Chace DH, Lim TH, Mei JV, Hannon WH. Comparison of Amino Acids and Acylcarnitines Assay Methods Used in Newborn Screening Assays by Tandem Mass Spectrometry. Clinica Chimica Acta 2010; 411: 684-689.


Bland Altman Plot: Malonylcarnitine (C3DC) Quarter 3, Specimen 3161 Expected Value (EV) 0.07 µmol/L whole blood

Bland Altman Plot: Hydroxybutyrylcarnitine (C4OH) Quarter 1, Specimen 1163 Expected Value (EV) = 0.07 μmol/L whole blood

Bland Altman Plot: Malonylcarnitine (C3DC) Quarter 1, Specimen 1163 Expected Value (EV) = 1.57 μmol/L whole blood

Ionization Efficiency

MS/MS Performance Metrics 2005 - 2010

Domestic False Positive Rates (%) for 2005-2010

	Year						
Disorder/Analyte	2005	2006	2007	2008	2009	2010	
Phenylketonuria (Phe)	0.4	0.2	0.5	0.7	1.8	0.1	
Maple Syrup Urine Disease (Leu)	0.0	0.6	3.1	0.7	0.6	0.1	
Homocystinuria (Met)	0.2	0.2	0.4	0.0	0.7	0.2	
Tyrosinemia I, II, III (Tyr)	0.0	0.0	0.3	0.0	0.3	0.3	
Maple Syrup Urine Disease (Val)	1.8	2.2	1.7	0.4	0.7	0.1	
Citrullinemia (Cit)	0.0	1.1	0.0	0.2	0.4	0.4	
C3 Screen	0.2	0.0	0.1	0.3	0.8	0.3	
C3DC Screen	N/A		0.8	1.6	2.9		
C4 Screen	1.2	0.6	0.2	1.1	1.0	0.9	
C5 Screen	0.2	0.0	0.0	0.9	1.0	0.1	
C5DC Screen	0.6	0.0	0.0	0.0	1.0	0.0	
C6 Screen	0.2	0.2	0.6	0.3	0.9	0.1	
C8 Screen	0.2	0.1	0.3	0.0	0.8	0.1	
C10 Screen	0.9	0.0	1.0	0.4	1.4	0.1	
C16 Screen	0.0	0.0	0.1	0.0	0.4	0.2	

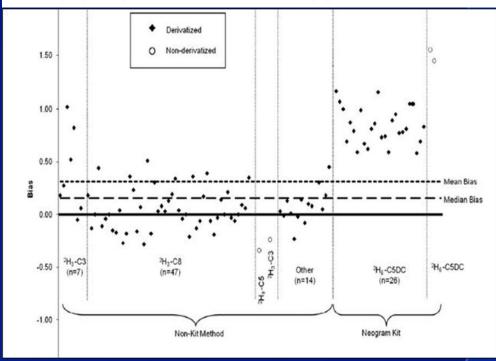
MS/MS Performance Metrics 2005 - 2010

Domestic False Negative Rates (%) for 2005-2010

	Year						
Disorder/Analyte	2005	2006	2007	2008	2009	2010	
Phenylketonuria (Phe)	0.8	0.6	0.0	1.1	0.5	0.8	
Maple Syrup Urine Disease (Leu)	0.0	0.0	0.0	0.0	1.1	0.5	
Homocystinuria (Met)	1.4	0.0	0.0	0.0	0.6	0.7	
Tyrosinemia I, II, III (Tyr)	0.0	1.6	0.7	3.3	1.0	1.5	
Maple Syrup Urine Disease (Val)	0.0	0.0	0.0	0.0	0.9	1.1	
Citrullinemia (Cit)	0.0	0.0	0.0	0.0	1.7	0.5	
C3 Screen	0.0	1.9	0.0	0.0	2.1	0.7	
C3DC Screen	C Screen N/A			0.0	4.0	19.4	
C4 Screen	0.0	0.4	0.0	0.0	3.1	0.0	
C5 Screen	1.7	0.8	0.0	0.0	4.0	0.5	
C5DC Screen	0.0	3.7	0.0	0.0	1.7	1.0	
C6 Screen	0.0	0.0	0.6	0.0	3.4	0.7	
C8 Screen	0.6	0.6	0.0	0.0	1.2	0.7	
C10 Screen	1.1	1.3	0.0	0.0	2.1	0.7	
C16 Screen	0.0	0.6	0.0	0.0	8.9	1.0	

What to do?

Derivatized assay can resolve C3DC and C4OH!


- C3DC, C5DC analysis enhanced by derivatization
- Choice of IS (Chace et al 2009)
- If unable to derivatize, establish ratios, work with other labs
- Follow-up procedures for correct screening classification (i.e., cutoffs)

Quantification of malonylcarnitine in dried blood spots by use of MS/MS varies by stable isotope internal standard composition

Donald H. Chace ^{a,*}, Timothy Lim ^b, Christina R. Hansen ^a, Barbara W. Adam ^b, W. Harry Hannon ^b

^b Pediatrix Analytical, The Center for Research and Education, Pediatrix Medical Group, Inc., 1301 Concord Terrace, Sumrise, FL 33323, United States
^b Newborn Screening Quality Assurance Program, Centers for Disease Control and Prevention (CDC), 4770 Buford Highway, NE, Atlanta, GA 30341, United States

NSQAP adapts to ensure high-quality screening

PT Testing

- NSQAP new category: C3DC + C4OH
- Allows for reduced corrective action reports
- No double-dipping!
- On-line reporting category: live in January 2012 (as of 11-07-2011)
- Instructions will be provided as soon as web site changes are completed

QC Materials

- Two characterization sheets for AA, AC QC materials
- No changes to reporting scheme

Summary

Newborn screening by tandem mass spectrometry is a successful public health program

>95% of newborns screened in US

Many challenges remain for C3DC screening

- Understanding assay and metabolite limitations is key
- Establish proper procedures to eliminate false positives and negatives

NSQAP is a comprehensive resource for laboratory services

New PT reporting reflects current practices in the field

NSQAP Web Site: http://www.cdc.gov/labstandards/nsqap.html

Why Must We Assure Assay Quality in Newborn Screening Labs?

 Early and accurate detection of congenital disorders saves lives!

Foreword

SPECIAL FOCUS: DRIED BLOOD SPOTS

For reprint orders, please contact reprints@future-science.com

A glowing future for dried blood spot sampling

"...a number of factors have recently come together to encourage this industry to break out of its shell and look for suitable alternatives to traditional plasma sampling."

AACC

Acknowledgements

- Newborn Screening Quality Assurance Program
 - Carla D. Cuthbert, PhD
 - Joanne V. Mei, PhD
 - W. Harry Hannon, PhD
- The Pediatrix Center for Research, Education and Quality

Collaborators

- Association of Public Health Laboratories
- US newborn screening laboratories
- International newborn screening laboratories

Donald H. Chace, PhD

Thank you for your attention!

Mamai

NSMBO