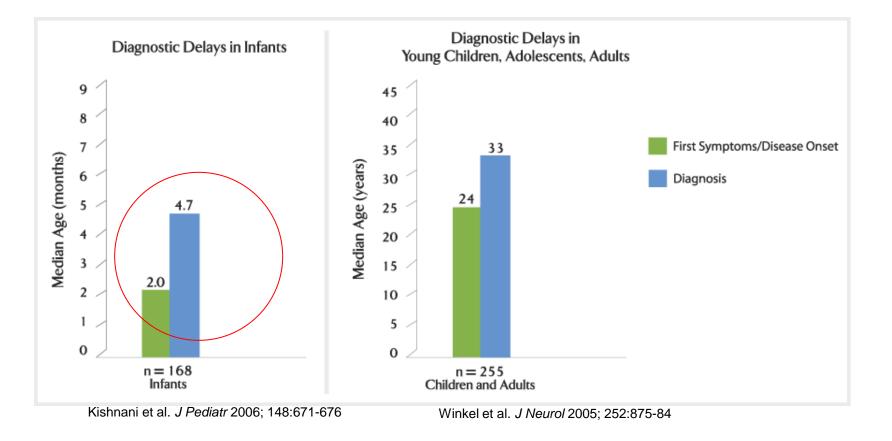
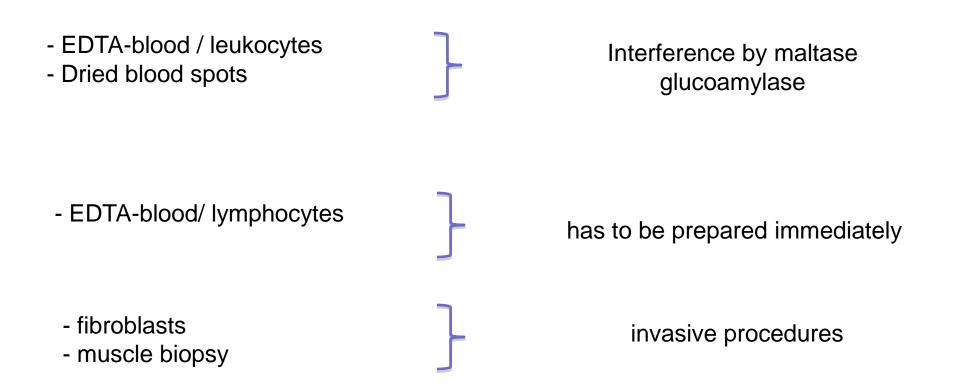

Two years of high-risk population screening for Pompe disease in Europe – An alternative to newborn screening ?

> Z. Lukacs Hamburg University Medical Center Germany

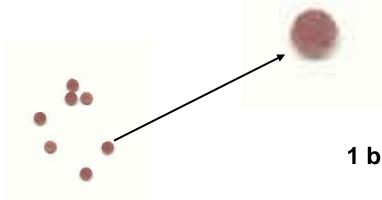

#### **Pompe Disease**

- Autosomal, recessive disorder (ca. 1:50 000)
- Deficiency of acid  $\alpha$ -glucosidase
- Accumulation of glycogen




- Infantile-onset (characterised by rapidly progressive disease course, often fatal by 1 year of age)
- Late-onset (characterised by relentlessly progressive disease course, often fatal)

#### **Pompe Disease**




### **Sample Types**



Pompe disease remained frequently undiagnosed. At the Hamburg Metabolic Laboratory (Pompe diagnostics only): Number of samples ca. 10 years ago: < 10 samples/year Number of samples 2009: 759 samples/year

### Where does the activity come from ?



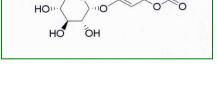
#### Standardized dried blood spot

1 blood spot (3 mm) consists of : ca. 3 μL whole blood

#### Activity

Contains: Plasma 1.5 μL Erythrocytes 1.5 μL

| Leukocytes | ca. 20,000 | + |
|------------|------------|---|


### **Development of the DBS-Assay**

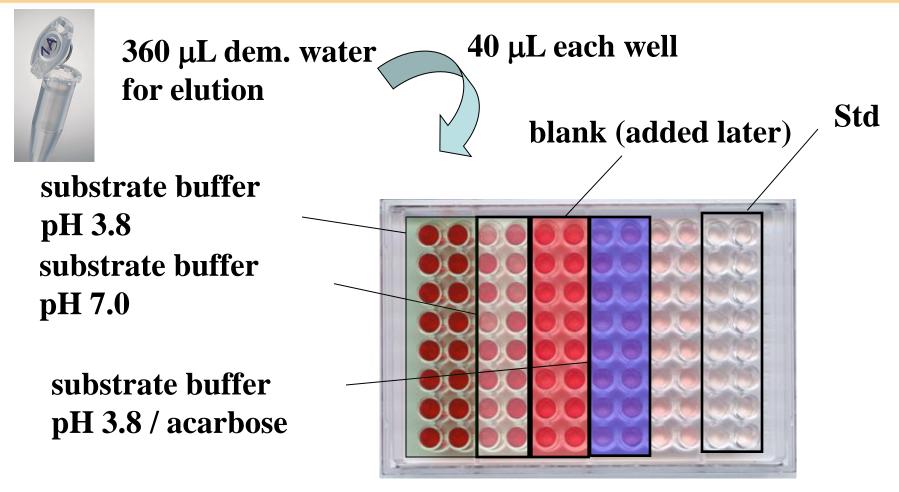
- Substrate
  - 4 methylumbelliferyl
    α- D-glucopyranoside (4-MUG)



- Lysosomal  $\alpha$ -glucosidase (GAA) active pH 3.5 6
  - The enzyme deficient in Pompe disease
- Two neutral  $\alpha$ -glucosidases optimum pH ~7.5
  - Do not have significant activity in acid conditions
  - Do not interfere in the GAA assay, can be used as a control enzyme
- Maltase-gluco (MGA), active pH ~3 8
  - Activity of erla, the ctivity of GAA
  - Interferes the cassay

#### acarbose




HO

CH<sub>3</sub>



reference enzyme

### **DBS Assay - Fluorometry**

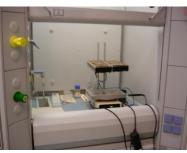


Time for assay : 23 h Manual working time: 1-2 h

#### **Fluorometry - Equipment**



#### e.g. Victor D2 or F (Perkin Elmer)

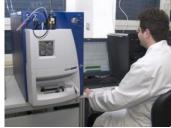

but evaluation of results requires experience !

### **DBS Assay – Mass Spectrometry**

Incubation (20 h)



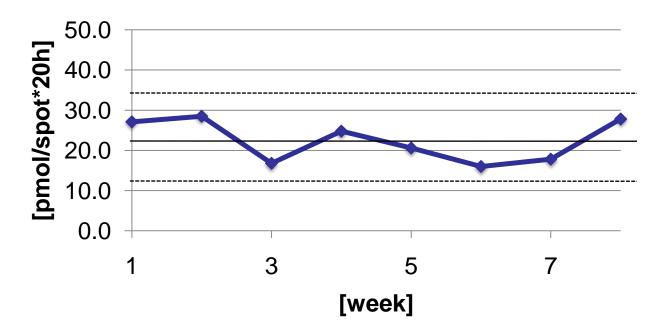
Liquid-liquid extraction with solvent




Simple solid phase extraction

Time for the assay: ca. 28 h Manual working time: ca. 6 h




Evaporation



Measurement

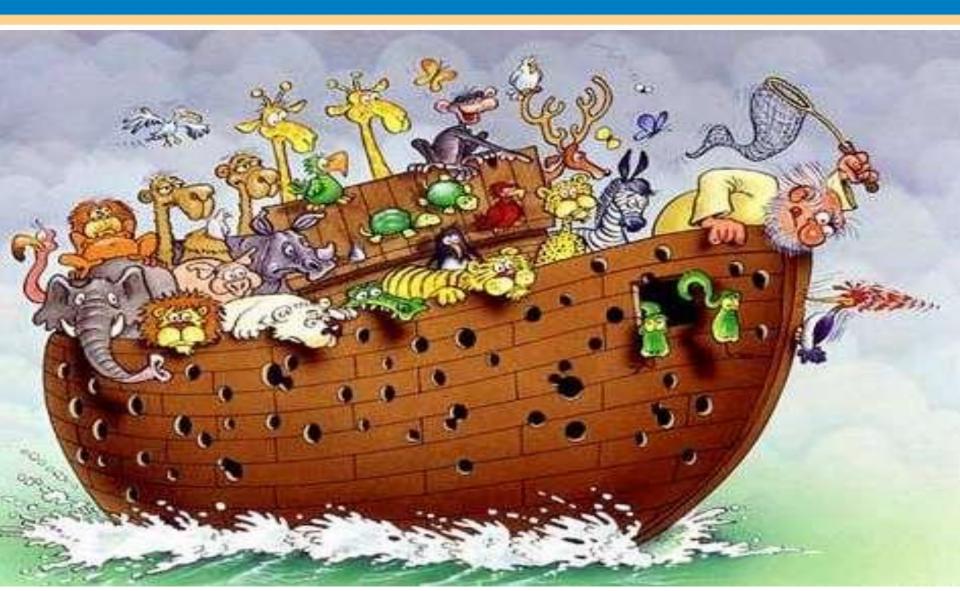
### **Quality Control / Quality Assurance**

- Each test must contain a positive / negative control



#### Acid sphingomyelinase – abnormal control

Acceptance criteria for each test must be established


# Comparison DBS / Lymphocytes (Fluorometry)

| Νο | Onset     | рН 3.8 | ried Blood Sp<br>pH 3.8<br>+Acarbose<br>mol/spot*21 | pH 7.0 | Inhib.<br>[%] | pH<br>Ratio | Lymph.<br>[nmol/mg<br>*min] |
|----|-----------|--------|-----------------------------------------------------|--------|---------------|-------------|-----------------------------|
| 1  | infantile | 0.81   | 0.09                                                | 2.79   | 92            | 2           | 0.03                        |
| 2  |           | 0.36   | 0.09                                                | 12.96  | 86            | 1           | 0.02                        |
| 3  | juvenile  | 0.90   | 0.09                                                | 3.51   | 88            | 3           | 0.02                        |
| 4  |           | 0.54   | 0.09                                                | 6.57   | 84            | 1           | 0.02                        |
| 5  | adult     | 0.90   | 0.09                                                | 2.88   | 92            | 2           | 0.01                        |
| 6  |           | 1.62   | 0.27                                                | 10.40  | 83            | 3           | 0.01                        |
| 7  | carrier   | 2.97   | 0.99                                                | 6.03   | 65            | 17          | 0.14                        |
| 8  |           | 1.35   | 0.63                                                | 3.78   | 49            | 18          | 0.30                        |

# **Comparison Fluorometry/MSMS (DBS)**

| Νο        | рН 3.8 | d Blood Spots<br>pH 3.8<br>+Acarbose<br>/spot*21 h | рН 7.0 | MSMS<br>+ Acarbose<br>[pmol/spot*20 h] |
|-----------|--------|----------------------------------------------------|--------|----------------------------------------|
| 1         | 0.36   | 0.09                                               | 6.89   | 17.41                                  |
| 2         | 1.62   | 0.27                                               | 7.38   | 31.02                                  |
| 3         | 0.81   | 0.14                                               | 4.37   | 56.68                                  |
| 4         | 1.08   | 0.27                                               | 6.35   | 93.30                                  |
| 5/carrier | 1.58   | 0.54                                               | 5.49   | 140.61                                 |
| 6/carrier | 1.31   | 0.36                                               | 5.67   | 128.80                                 |

### **Some thoughts to Newborn Screening**



### **Newborn Screening for Pompe Disease**

Clinical Chemistry 54:10 1624–1629 (2008) Pediatric Clinical Chemistry

Newborn Screening for Pompe Disease by Monsuring Acid of Chucosidaea Activity Diagnostic efficacy of the fluorometric determination of enzyme activity for Pompe disease from dried blood specimens compared with lymphocytes—possibility for newborn screening

Zoltan Lukacs · Paulina Nieves Cobos · Eugen Mengel ·

#### Early Detection of Pompe Disease by Newborn Screening Is Feasible: Results From the Taiwan Screening Program

Yin-Hsiu Chien, Shu-Chuan Chiang, Xiaokui Kate Zhang, Joan Keutzer, Ni-Chung Lee, Ai-Chu Huang, Chun-An Chen, Mei-Hwan Wu, Pei-Hsin Huang, Fu-Jen Tsai, Yuan-Tsong Chen and Wuh-Liang Hwu Pediatrics 2008;122;e39-e45; originally published online Jun 2, 2008; DOI: 10.1542/peds.2007-2222

### **Reviews on LSD screening**

American Journal of Medical Genetics Part C (Seminars in Medical Genetics) 157:63-71 (2011)

ARTICLE

#### Newborn Screening for Lysosomal Storage Disorders

KIMITOSHI NAKAMURA,\* KIYOKO HATTORI, AND FUMIO ENDO

THE JOURNAL OF PEDIATRICS · www.jpeds.com

MEDICAL PROGRESS

Newborn Bloodspot Screening for Lysosomal Storage Disorders

Hui Zhou, MD, PhD, Paul Fernhoff, MD, and Robert F. Vogt, PhD

### High-Risk Population Screening for Pompe Disease

- Cardiomyopathy (infantile patients)
- Neuromuscular Diseases
  - unclear CK-elevations
  - unclear limb girdle dystrophy



### **CK-Study / Prevalence Study**

- Study to assess the prevalence of Pompe disease among
  - patients with unexplained CK-elevations
  - patients with limb girdle muscle dystrophy of unknown origin
  - infantile patients with cardiomyopathy (extended part)



For the European study:

Austria, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, Germany, Israel, Latvia, Lithuania, Portugal, Romania, Russia, Serbia, Slovakia, Spain, Turkey

### **CK-Study / Prevalence Study - Results**

Time : May 2009-May 2011 (open end)

CK Study : Total number of samples: 1320 samples Patients found : 21 Most patients from Germany Mean age at diagnosis: 39 years

Prevalence Study: Total number of samples : 1578 samples Patients found: 72 Most patients from Turkey, Israel and Spain Mean age : 30 years (excluding infantile onset) Mean age : 18 years (with infantile patients)

Total : 3.2% of samples have been positive (probably 3.7 million babies have to be screened to find similar number of patients)

### **CK-Study - Heterozygotes**

| Νο | Symptoms                                          | Mutation                  | Activity (Fl.)<br>[nmol/spot*21 h]<br>> 0.9 | Activity (MS)<br>[pmol/spot*20 h]<br>> 200 |
|----|---------------------------------------------------|---------------------------|---------------------------------------------|--------------------------------------------|
| 1  | CK 1566 U/L,<br>LGMD, mild<br>unspecific myopathy | c1942A>G                  | 0.54                                        | 140.8                                      |
| 2  | CK up to 1500 U/L<br>mild LGMD                    | c45T>G                    | 0.36                                        | 128.8                                      |
| 3  | LGMD Type 2I                                      | c.664G>A                  | 0.63                                        | 184.5                                      |
| 4  | Mother Pompe/CK                                   | na                        | 0.59                                        | 302.9                                      |
| 5  | Mother Pompe/CK                                   | na                        | 0.68                                        | 336.3                                      |
| 6  | Severe dyspnoe                                    | Del exons 3,<br>10 and 14 | 0.46                                        | 172.9                                      |
| 7  | Family affected/CK                                | na                        | 0.36                                        | 286.2                                      |
| 8  | Family affected/CK                                | na                        | 0.50                                        | 320.5                                      |



- High-risk population screening has been shown to be successful for the identification of, esp. adult-onset patients
- It provides an excellent cost-benefit-ratio
- In regions where neonatal screening cannot be introduced for fiscal or ethical/political reasons, high-risk screening is a valid alternative
- It can lay the groundwork for future neonatal screening by answering many scientific questions and educating physicians about these rare diseases



# Thank you !

#### Genzyme

Joan Keutzer Stefaan Sansen and many others

#### Munich

Prof. Schoser Prof. Müller-Felber

#### Halle

PD Dr. Deschauer Dr. Hanisch

#### Copenhagen

Prof. Visser Dr. Preisler

#### Genetics

Dr. Gläser Prof. Santer .... and all other people who send samples to our laboratory

