The Axis of Contamination *Dextrose and Amino Acids* False Positives due to TPN for VLBW Infants

Donald H. Chace, PhD, MSFS, FACB The Center for Research, Education and Quality Pediatrix Medical Group Sunrise, Florida The title I would like to use...

TPN

FAST FOOD FOR PREEMIES

VLBW – Very Low Birth Weight

* Hypothesis:

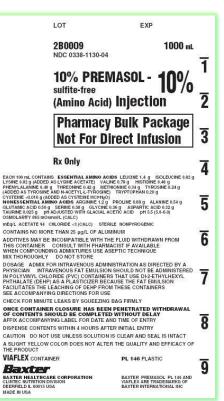
- Extremely high concentrations of amino acids in DBS are <u>not</u> due to a biochemical defect.
- False Positive Results are <u>in part</u> due to mixing (contamination) of IV feeds (total parenteral nutrition solutions) that contain very high concentrations of amino acids.
- A marker for contamination by TPN would help identify infants whose DBS sample is invalid / unacceptable and reduce presumptive positives.
 - * Would not reduce repeat sampling in the short term.
 - * Reduce repeat sampling in the long term by identifying laboratories that do not collect samples properly

Brief History

- * High FP rate for premature infants historically.
 - * even with better analytical instruments and methods.
- * False Positives characterized by very high Leu/Ile, Phe, Met, Ala but not Tyr.
 - * Interpretation guidelines in some labs act on milder elevations of Tyr and/or Met but not on much higher concentrations of Met when Leu/Phe/Ala are also high.
- * Clinical trial of 100 premature infants with multiple collections points on TPN did not have these very abnormal profiles.
- * Examination of all very high AA profiles revealed markers in the acylcarnitine profiles that were not acylcarnitines.
 - * Process of elimination indicated dextrose
 - * Mass spectra indicated a carbohydrate
 - * Mayo suggested dextrose in an abstract at an SIMD meeting.

What is TPN?

* Source of Energy

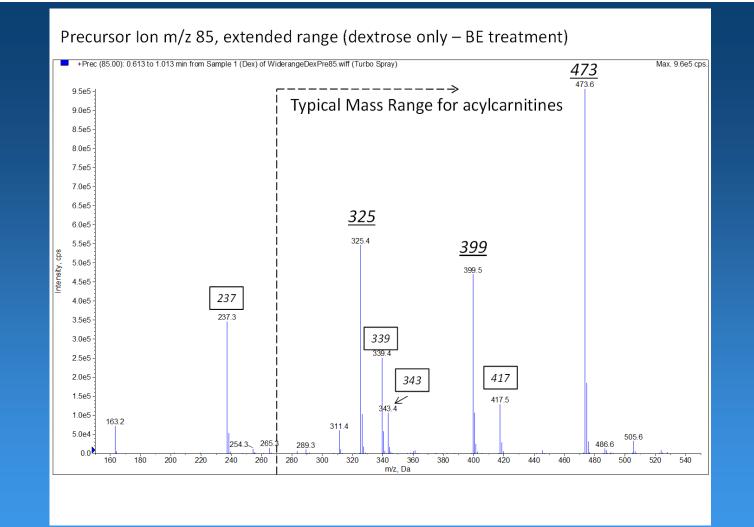

- * DEXTROSE (D-glucose)
 - * 5, 10 and 12.5% (% = g per 100mL, dL)

* Source of Protein

- * Free L-Amino Acids
 - * 2 4 g per kg per day
 - * Proprietary mix of AA

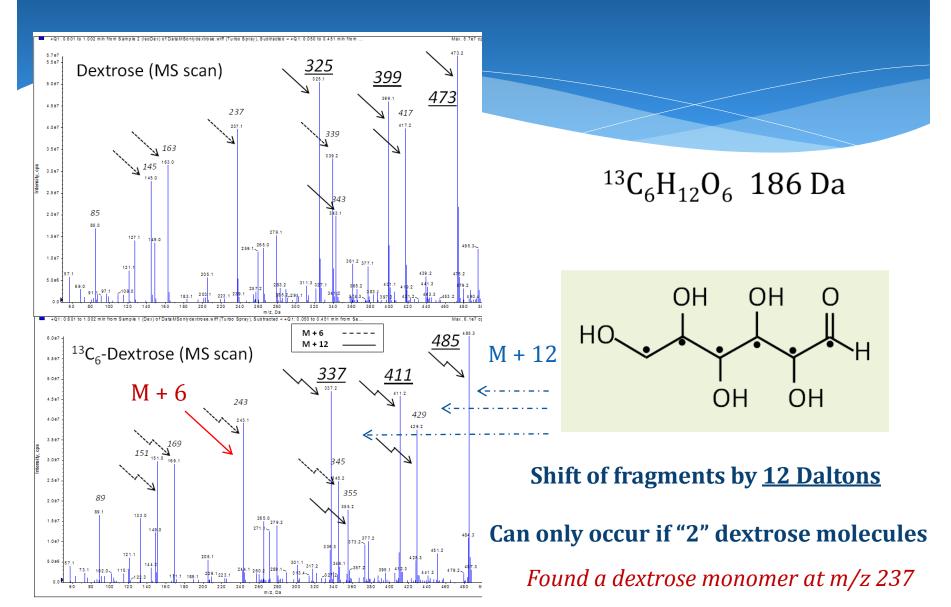
* Isotonic Saline

* Salts, minerals etc...

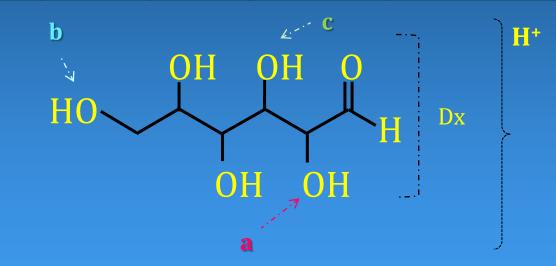


Unusual m/z values in the AC-BE Profiles (Pre 85)

* Nearly all false positive results with high amino acid concentrations had the following markers in the acylcarnitine profile:

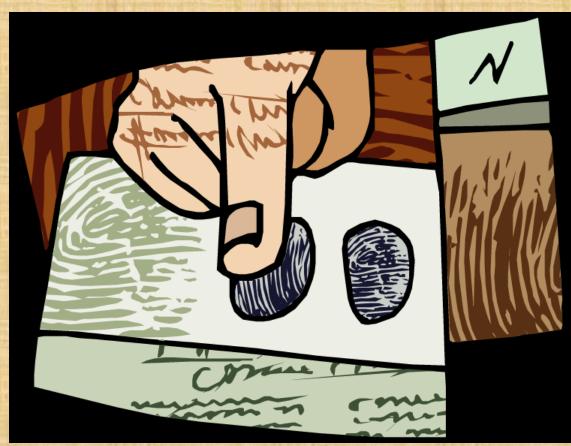

m/z: 325 399 473

- * Dextrose suspected based on
 - * Product ion profile had fragmentation profiles similar to carbohydrates.
 - * Eliminated other components of TPN
- * Conclusive evidence for dextrose not easily obtained because:
 - * Analysis of pure dextrose did not show markers
 - * (subsequently found that preparation in same manner of a DBS did show markers)
 - m/z values did not add up to dextrose (MW = 260)

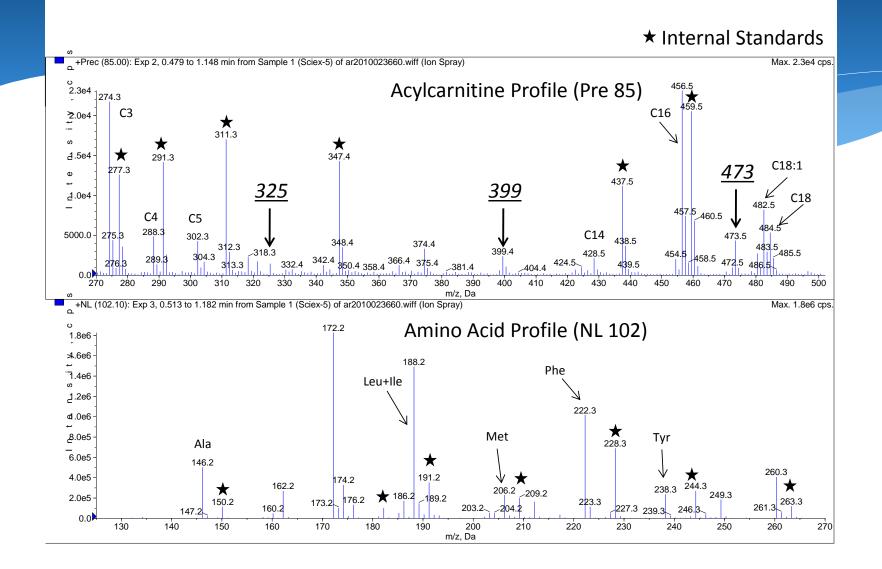


Pre – 85 (AC profile) Dextrose – (prepared in same manner as DBS – butyl esterification)

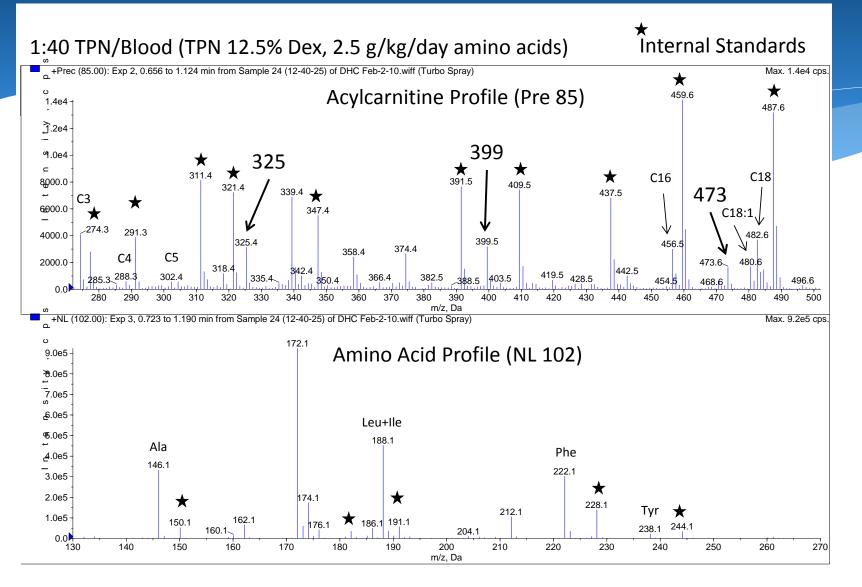
Solution: Isotope Labeled D-glucose (m/z 180)


m/z	Dx	a	b	С	Formula	Comments
237	Dex	Butyl	-		$[C_{10}H_{21}O_6]^+$	butyl ether
325	Dex	Dex-H ₂ 0	-	-	$[C_{12}H_{21}O_{10}]^+$	Dimer – water
399	Dex	Dex	Butyl	-	[C ₁₆ H ₃₁ O ₁₁]+	Dimer + butyl ether
417	Dex	Dex	Butyl	-	$[C_{16}H_{33}O_{12}]^+$	237 + 180
473	Dex	Dex	Butyl	Butyl	$[C_{20}H_{41}O_{12}]^+$	2 x 237 – H+

Butyl ethers with dextrose!

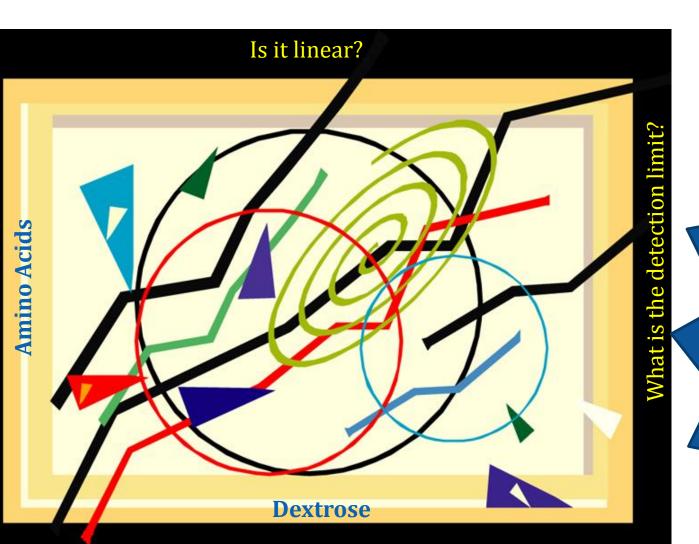

Monomers, dimers and trimers – Oh My!

DEXTROSE IDENTITY CONFIRMED



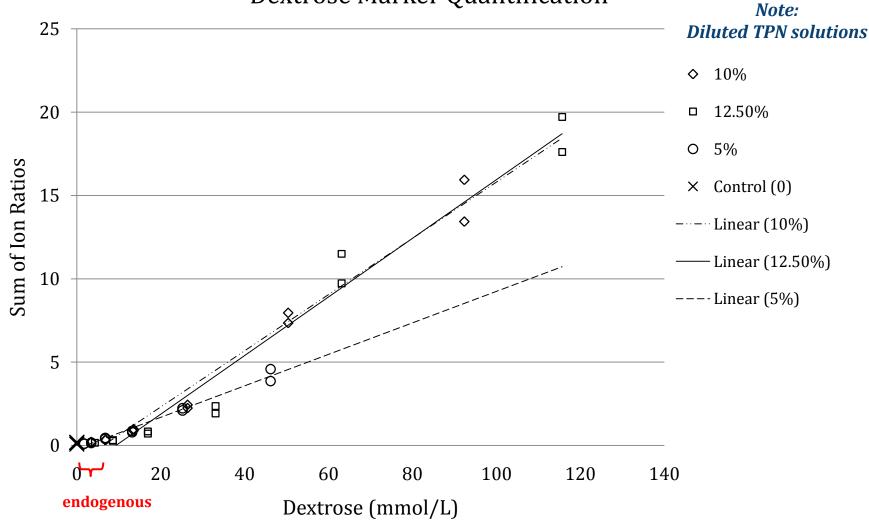
BUT WAS THE CRIME SCENE CONTAMINATED?

Classic High FP from a Preemie DBS

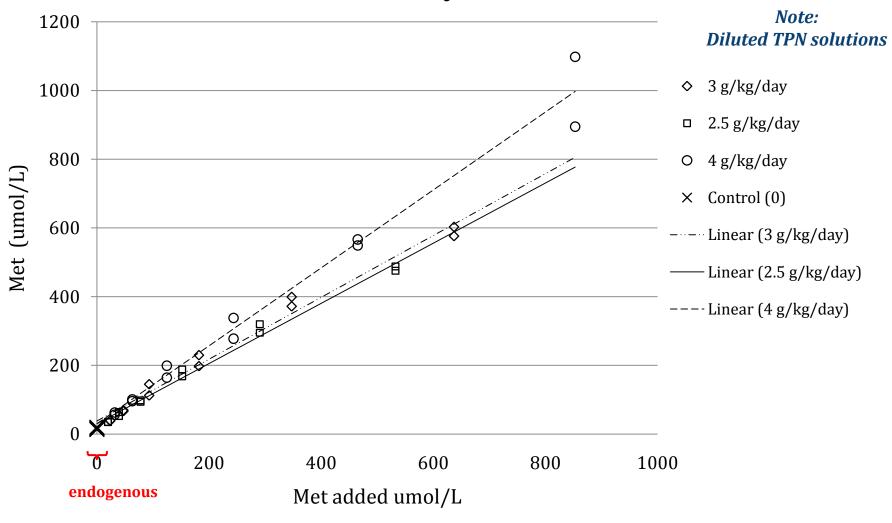

DBS spiked with TPN for Comparison

1:40 dilution of TPN solution in Blood before making DBS

Dextrose Marker Quantification – Amino Acid Relationship


Can I use data in my interpretation?

Is there a direct relationship between Dextrose and Amino Acids?


Dextrose Blood Concentration vs Sum of Dextrose Marker Pseudo-concentrations

Methionine blood Concentrations (a representative marker of amino acids)

Methionine Quantification

A bit more data....

Table 4

Selected actual and estimated amino acid concentrations (µmol/l).

3.0 g/kg/day	Ala	Leu + Ile	Met	Phe	Tyr
indogenous	330.59	136.44	18.78	47.6435	42.39
1:5 saline/endog	262.82	106.64	13.97	37.02	34.15
1:80	504.21	576.66	68.18	128.15	51.69
1:5	2119,49	4338.00	589.44	865.53	119.16
Estimated 1:5	1706.80	4829,77	636.95	829.09	367.35

Table 2

Regression analysis for dextrose marker ion ratios and dextrose enrichments.

Dex marker	Correlation coefficient	Slope	Intercept
325 (solutions A, B and C)	0.98	0.05	-0.20
399 (solutions A, B and C)	0.97	0.07	-0.39
473 (solutions A, B and C)	0.96	0.04	-0.39
DxSum (solutions A, B and C)	0.98	0.16	-0.98
DxSum (solution A)	0.98	0.18	-1.6
DxSum (solution B)	0.99	0.16	-0.57
DxSum (solution C)	0.99	0.09	-0.2

Note that a 1:80 contamination increases Leu+Ile above most cutoffs and Met and Phe are borderline. Tyr remains normal.

1:80 is a detectable dex marker concentration

Table 3

Regression analysis of added TPN and selected amino acids.

Dextrose / Amino Acids correlate with calculated concentrations in TPN

Amino acid	Correlation coefficient	Slope	Intercept	
Ala	0.99	0.99	407	
Leu + Ile	0.99	0.89	301	
Met	0.98	1.0	21	
Phe	0.98	1,1	54	
Tyr	0.94	0.22	44	

TPN's Signature Profile

Molar Ratios *

Table 5

- As the TPN contamination increases, the molar ratios of amino * acids approach a signature TPN profile rather than a normal endogenous profile
- * Reducing FP for PKU via an elevated Phe/Tyr ratio does not work.
 - * As published a secondary ratio (Phe/Leu) is necessary to rule out PKU in preemies. These results confirm why.

3.0 g/kg Phe/Tyr Phe/Leu Leu/Phe Met/Phe Leu/Ala Endogenous 1.12 0.35 2.86 0.39 0.411:5 saline/endog 1.08 0.35 2.88 0.38 0.411:802.48 0.22 4.50 0.53 1.15 7.26 0.20 5.00 2.05 1:5 0.68

Amino acid molar ratios of selected blood pools.

Approach for use in the NBS lab...

- * Verify markers on your instrument...
 - * Ionization efficiency of instruments vary thus the three markers may also vary in relative intensity
 - * It is why the sum of the markers was used in the study
- * An exact determination of the increase concentration of amino acids cannot be made based on the dextrose marker sum.
 - * It can be approximated based on information of what was given to infant.
- * Further study in ongoing in a 1000 premature infant clinical trial where the marker is measured at 5 different time points.

Conclusions

- * Detection of dextrose markers together with elevated amino acids indicate that a DBS was contaminated by TPN solution.
 - * Profile does not reflect infants metabolism
- * Higher concentrations of TPN contamination more closely reflect the TPN solution.
- * It is likely that dextrose markers may be more frequent in certain collection facilities/nurseries.
 - * An opportunity to revisit collection procedures
- False positive rates reduced. Short term follow-up / repeat sample increased.
 Long term follow up /repeat sample reduced with improved collection.

	Clinica Chimica Acta 411 (2010) 1806-1816		
	Contents lists available at ScienceDirect	- GA	
5-52-22	Clinica Chimica Acta	Clinica Chimica Acta	
ELSEVIER	journal homepage: www.elsevier.com/locate/clinchim		

Tandem mass spectrometric identification of dextrose markers in dried-blood spots from infants receiving total parenteral nutrition

Donald H. Chace ^{a,*}, Víctor R. De Jesús ^b, Timothy H. Lim ^b, W. Harry Hannon ^b, Alan R. Spitzer ^a

^a Pediatrix Analytical, The Pediatrix Center for Research, Education and Quality, Pediatrix Medical Group, Inc. 1301 Concord Terrace, Sunrise, FL 33323, USA
^b Newborn Screening Quality Assurance Program, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Mail Stop F-19, Atlanta, GA 30341, USA

Clinica Chimica Acta 412 (2011) 1385-1390

Detection of TPN contamination of dried blood spots used in newborn and metabolic screening and its impact on quantitative measurement of amino acids

Donald H. Chace ^{a,*}, Víctor R. De Jesús ^b, Timothy H. Lim ^b, W. Harry Hannon ^b, Reese H. Clark ^a, Alan R. Spitzer ^a

* The Pediatrix Center for Research, Education and Quality, Pediatrix Medical Group, Inc., 1301 Concord Terrace, Sunrise, FL 33323, USA

^b Newborn Screening Quality Assurance Program, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Mail Stop F-19, Atlanta, GA 30341, USA

Evidence Suggest Markers are Present in

NEWS FLASH

Kickin' around Who needs

UNDERIVATIZED METHOD USING HYDRAZINE

Hydrazine derivatizes succinylacetone and...

New Markers at m/z 177,195,339,357

This <u>crime</u> (not doing butylesters) is under investigation!

PS – *if you do butyl esterification and hydrazine you get even more markers! Just what we need in our profiles!*

AMERICA's MOST Wanted (Scientists at the CDC)

Partners in Grime Research-The Line-Up spot check