

High-throughput Multiplex Newborn Screening Assay for Six Lysosomal Storage Disorders (LSDs) using Dried Blood Spots and UPLC-Tandem Mass Spectrometry

George Dizikes, PhD Illinois Department of Public Health Chicago, IL george.dizikes@illinois.gov

Atlanta, GA February 6, 2015

Lysosomal Storage Disorder (LSD)

- Lysosome an intracellular organelle containing many enzymes that degrade complex molecules.
- The absence or loss of function of an enzyme/protein along the pathway results in the accumulation of complex molecules that are normally degraded within lysosomes.
- The progressive accumulation of these products leads to cellular dysfunction and eventually causes tissue and organ dysfunction.

LSD (cont'd)

- LSD represents about 50 genetically heterogeneous disorders.
- Almost all LSDs are inherited as autosomal recessive traits except for the X-linked Fabry and Hunter diseases.
- Individually, the incidences of these diseases are rare. However, collectively, LSDs are far more common (1 in 8000)
- Pre-symptomatic diagnosis will be beneficial for babies.

LSD Testing Timeline

2007– Legislative mandate for five LSDs (Krabbe, Pompe, Fabry, Gaucher, Niemann-Pick A/B)

2010 – Pilot screening for Pompe, Fabry & Gaucher using microfluidic platform

- o 8,012 DBS screened
- Two had abnormal GAA activities, confirmed negative by second-tier tests

LSD Testing Timeline (cont'd)

- 2011 Legislative mandate expanded to seven LSDs (addition of Hurler and Hunter), with the following provisions before screening:
 - A method either cleared by the US Food and Drug Administration (FDA) or validated under the Clinical Laboratory Improvement Amendments (CLIA)
 - Availability of quality control and proficiency testing materials
 - Appropriate equipment for high-volume screening
 - Adequate funding

LSD Testing Timeline (cont'd)

- 2011 Decision made to switch from microfluidic platform to tandem mass spectrometry
 - Microfluidic platform did not have substrates for all LSDs.
 - Microfluidic platform lacked throughput for Illinois' volume (~170,000 newborns per year).
 - Recent developments with multiplex MS/MS promised adequate testing throughput for more disorders and with less staff.
- 2014 Method validation and limited pilot testing
- 2015 Statewide testing expected to begin 1ST quarter

Multiplex LC-MS/MS Assay

Modification of method developed at the University of Washington for six LSDs: Krabbe, Pompe, Fabry, Gaucher, Niemann-Pick (A/B), Hurler (MPS I).

- Single DBS punch
- Single buffer
- In-line chromatographic purification (no solid-phase or liquid extraction)
- Three-hour incubation (maintains work flow).
- UPLC column separates product/ISTD pairs and removes salt, detergent, & phospholipids by valving.
- 2.5 minute injection cycle, 500 injections/instrument/ day, >10,000 injections/PM.

6-Plex Assay

Final Composition of Assay Cocktail & Assay Conditions*

Ammonium formate	0.1 M, pH 4.4
Sodium cholate	10 g/L
Acarbose	0.08 M
N-Acetyl-α-galactoseamine	50 mM
IDUA Substrate (S), Interna Standard (IS) GLA S, IS GAA S, IS ASM S, IS (d7-C6 Ceramid GALC S, IS (d7-C8 Ceramid ABG S, IS (d7-C12 Ceramid	$\begin{array}{c} 1 \\ 500 \ \mu M, \ 3.5 \ \mu M \\ 600 \ \mu M, \ 1.2 \ \mu M \\ 200 \ \mu M, \ 2.0 \ \mu M \\ e) \\ 150 \ \mu M, \ 2.5 \ \mu M \\ de) \\ 450 \ \mu M, \ 2.5 \ \mu M \\ de) \\ 300 \ \mu M, \ 2.5 \ \mu M \end{array}$
3 h/17 h incul	bation at 37 $^{\circ}$ C
 Reaction was	 100 µL top layer was
quenched with 200	transferred to a glass-
µL acetonitrile	lined plate, and 100
(ACN) and	µL MS-grade water
centrifuged for 5 min	was added to each
at 1000 x g.	well.

*Spacil Z, Tatipaka H, Barcenas M, Scott CR, Turecek F, Gelb MH. Clin Chem. 2013 Mar;59(3):502-11

Acquity TQD Instrument

Retention Times (RT, min) for Substrates and Products of GAA, GALC, and ABG

Enzyme	Substrate RT	Product RT
GAA	0.53	0.59
GALC	0.86	0.96
ABG	1.08	1.23

UPLC Chromatogram

DBS Median Activities for Six Enzymes

Method Validation

- Evaluate different levels of Quality Control samples (Low, Medium, and High).
- Perform precision studies.
- Perform accuracy studies.
- Participate in the CDC pilot Proficiency Testing (PT) program for Pompe (and Krabbe).
- Obtain DBSs from confirmed cases.

Method Validation (cont'd)

- Test de-identified specimens from male, female, low birth weight, and 7+ day-old babies.
- Study the effects of detergents and DBS storage conditions on LSD enzyme activities.
- Determine cut-off values.
- Exchange specimens with a qualified testing laboratory to establish comparability of results.

CDC QC levels for IDUA, GLA & GAA (Hurler) (Fabry) (Pompe)

CDC QC Levels for ASM, GALC & ABG (Niemann-Pick) (Krabbe) (Gaucher)

Pompe Results for de-ID DBSs, Confirmed Cases, PTs, and Quality Controls

Statistical Analysis of Pompe Assay Results for DBSs

	n	Mean	95%	6 CI	SE	SD
De-identified residual DBS	10003	7.45	7.37	7.52	0.04	3.64
Confirmed Cases	3	0.58	0.31	0.85	0.06	0.11
CDC PT	4	0.88	0.76	1.00	0.04	0.08
Control Low	16	0.78	0.73	0.83	0.02	0.09
Control Medium	16	3.63	3.40	3.87	0.11	0.44
Control High	15	7.28	6.84	7.73	0.21	0.80

	n	Min	Median	95%	6 CI	Max
De-identified residual DBS	10003	1.12	6.70	6.64	6.76	49.3
Confirmed Cases	3	0.48	0.57	N/A		0.69
CDC PT	4	0.77	0.90	N	/A	0.94
Control Low	16	0.65	0.77	0.71	0.87	0.99
Control Medium	16	3.01	3.62	3.19	3.90	4.63
Control High	15	6.16	7.34	6.72	7.60	9.30

Krabbe Results for de-ID DBSs, Confirmed Cases, PTs, and Quality Controls

Statistical Analysis of Krabbe Assay Results for DBSs

	n	Mean	95% CI		SE	SD
Deidentified Residual						
DBS	12222	1.49	1.47	1.52	0.01	1.43
Confirmed Cases	7	0.14	0.10	0.18	0.02	0.04
CDC PT	5	0.12	0.09	0.14	0.01	0.02
PE Control Low	21	0.11	0.09	0.12	0.01	0.03
PE Control Medium	20	0.35	0.31	0.38	0.02	0.07
PE Control High	13	0.58	0.48	0.69	0.05	0.17

Groups	n	Min	Median	95% CI		Max
Deidentified Residual DBS	12222	0.07	1.16	1.14	to 1.17	34.49
Confirmed Cases	7	0.07	0.16	0.07	to 0.18	0.18
CDC PT	5	0.10	0.11	-	-	0.15
PE Control Low	21	0.07	0.10	0.09	to 0.12	0.18
PE Control Medium	20	0.23	0.34	0.28	to 0.42	0.48
PE Control High	13	0.40	0.52	0.41	to 0.71	0.92

Enzyme Activity Distribution for GAA and GALC

Linearity of Enzyme Reactions

3 h vs 17 h Assays – Percent of Median Activities

Comparison of 3 h to 17 h incubation for GALC

Longer incubation improves discrimination between confirmedpositive and presumednegative specimens, increasing specificity.

Normal and Abnormal Ranges as Percent of Daily Median Activity

	Normal Range	rmal Range 1 st Cut-off Borderline		2 nd Cut-off (presumptive positive)	
IDUA	> 31%	≤35%	> 28 and \leq 31	≤28%	
GLA	> 18%	\leq 20%	> 13 and \le 18	≤ 13%	
GAA	> 28%	\leq 30%	$>$ 23 and \leq 28	$\leq 23\%$	
ASM	> 15%	\leq 20%	> 11 and \leq 15	≤ 11%	
GALC	> 13%	≤18%	No Borderline	≤ 13%	
ABG	> 20%	\leq 25%	$> 17 \text{ and } \le 20$	≤ 17%	

Summary of IDPH-CLIA Laboratory Comparison (n=12,000)

	FABRY	GAUCHER	KRABBE	MPS I	NIEMANN PICK A/B	POMPE
Number of Normal Specimens sent to CLIA Lab	69	66	72	54	74	62
Number of Specimens Below 1st Cut-off sent to CLIA Lab	6	9	37	21	1	13
Positives and Borderlines Determined by IDPH	4	4	8	16	1	9
Positives Confirmed by CLIA Laboratory	0	1	4	7	1	2
Diagnosed Cases	0	1	0	0	1	0
Other Resolutions (PD: Pseudodeficiency)			1 PD 2 Carrier 1 Normal	5 PD 1 Normal 1 Pending		1 PD 1 Carrier

Lessons Learned

- Many different individuals with a wide range of skills need to work together to successfully develop a complex, high-throughput analytical assay.
- The process will take longer than initially anticipated; regular interactions and good communications are vital.
- MS/MS platform permits expanded test menu and multiplexing with a single injection.

Lessons Learned (cont'd)

- There are many challenges in adapting a research procedure to a high-throughput newborn screening assay (e.g., analytical, personnel, physical plant, and IT). FDA-cleared tests are vastly preferable.
- If at all possible for mandated testing, have legislation or administrative rules written to permit adequate preparation and milestones (e.g., method validation, QC and PT availability, acquisition of high volume equipment, & funding).

Conclusions

- Very useful for high-throughput newborn screening for six lysosomal enzymes
- Can be adopted to screen 1-6 enzymes depending upon laboratory requirements
- Using 3 hour incubation, first screening results can be obtained within 24 hours of specimen receipt, and positive results can be released after an additional 24 hours.
- For Krabbe, 17 hour incubation should be used for evaluating second cut-off.

Acknowledgments

<u>IDPH</u>

- Khaja Basheeruddin, Ph.D. Unit Supervisor
- Rong Shao, M.D. Laboratory Research Scientist
- Fran Balster Clinical Laboratory Technologist
- Pearlie Gardley Clinical Laboratory Technologist
- Tamara Simulick Clinical Laboratory Technologist

<u>Others</u>

- Barbara K. Burton, M.D. Lurie Children's Hospital
- Michael H. Gelb, Ph.D. University of Washington
- Joseph J. Orsini, Jr., Ph.D. Wadsworth Center
- Michele Caggana, Sc.D., FACMG Wadsworth Center
- Carlos A. Saavedra-Matiz, M.D. Wadsworth Center
- Dietrich Matern, M.D., Ph.D Mayo Clinic
- CDC Newborn Screening and Molecular Biology Branch
- PerkinElmer Corporation

THANK YOU

George Dizikes, Ph.D. Illinois Department of Public Health 2121 W. Taylor Street Chicago, IL 60612 312-793-4745

george.dizikes@illinois.gov
http://www.dph.illinois.gov