Lab Math Primer Preparation and Dilution

Carlos A. Saavedra-Matiz, MD Newborn Screening Program Wadsworth Center New York State Department of Health

> March 11, 2015 APHL-CDC

DNA the molecule of life

DNA

Trillions of cells

- Each cell:
- 46 human chromosomes
- 2 meters of DNA
- 3 billion DNA subunits (the bases: A, T, C, G)
- Approximately 30,000 genes code for proteins that perform most life functions

chromosomes

protein

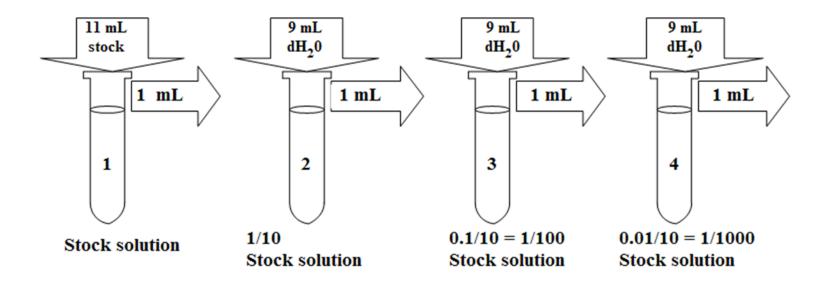
gene

cell

Y-GG 01-0085

PCR Cycle – Step 3

Taq Polymerase Catalyzes Primer Extension As Complementary Nucleotides Are Incorporated


PRIMER 2

Concentration of a Solution:

1 solution of NaOH (23 Na 16 O¹H) = 40 g NaOH dissolved in 1 liter of H₂O = **1**N

- 1mM (miliM)= 1:1000 dilution of 1M or 10^{-3} 1µM (microM)= 1:1000 dilution of 1mM or 1:1,000,000 of 1M or 10^{-6} 1nM (nanoM)= 1:1000 dilution of 1 µM or 1:1,000,000,000 of 1M or 10^{-9}
- **1pM (picoM)** = 1:1000 dilution of 1 nM or 1:1,000,000,000 of 1M or **10**⁻¹²

Demonstration: $100 \mu M = 100 \mu Moles/L = 0.1 n Moles/\mu L$

100 μ M = 100 μ Moles/L

- = 100 μ Moles / 1,000 mL or 100 μ Moles / 10³ mL
- = 100,000 nMoles / 1,000 mL or $100 \times 10^3 \text{ nMoles} / 10^3 \text{ mL}$
- = 100 nMoles / mL
- $= 100 \text{ nMoles} / 1,000 \mu L$ or $100 \text{ nMoles} / 10^3 \mu L$
- = 0.1 nMoles/ μ L = 100 μ M

5' - LC705-AAgAgTTCggCATCAAggAgCATgg--PH

7	ncentration of pro				0 nmol			μM				
	ale and purificat	tion :		Sy	nthesis:	0.0	10 µmol	Pu	rification	h: HPLC Con	dition: 5	LC 3 nmol ly
Modifications				nc		-						
Number of b	Constraint and a second second				8	1000	: 9		4	T: 4	total	
vvooble base	es and GC conte	ent :		W	obbel:	0		Mod	d.; 0	GC-conten	t 52.0	%
Chemical pro	operties and con	stant factors of th	ne product :									
Molar extinct	tion coefficient	8			29149	0	I / mol cn	n				
Molecular we	eight ammonium	salt NH 4			8188.	9	g / mol					
Molecular we	eight free acid :				7780.	2	g / mol					
Picomoles p					3430,0		pmol / O	D				
Micrograms					28,		µg / OD					
Delivered an	nount (per vial w	hen delivered in	aliquots)									
Amount in or	otical units OD	260			0.9	9	OD					
Molar amour		850)			3,0	760 0	nmol					
Amount in up	g mass units :				24		10					
Molar concer	ntration when de	elivered in 1 ml so	lution :		3,0	0	μM (pmol	(Iµ / I			
20 µM (20	0 pmol/µl) requir	es a volume of :			15		μl					
50 µM (50	0 pmol/µl) requir	es a volume of :			60	0	µl ((To p	repare s	tock solutions	of	
100 µM (100	0 pmol/µl) requir	es a volume of :			30	0	μl i	differ	ent conc	entration)		
Mass concer	ntration (for hybr	ridization) :				_						
Concentration	n, when dissolve	d in1 ml :			0.02	5	lų / gų					
Dilution when	preparing a solu	ution with 0,5 µg/n	nl :		1:5		100 Sallana	actor	from a 1	ml solution		
To prepare a	ι 0,1 μg / μl solu	tion dissolve the	product in :		24	7	μΙ					
		c approach (TIB I	and the second		64,9	9	<u>°C</u>					
Sector Contraction of the sector of the sect		single mutation			61,4	4	°C					
	Provide and the second second second	emperature (<= 7)			72,	1	°C					
1790 a		$T = 2^{\circ}C, G/C = 4$	°C)		76,0	0	°C					
Melting point	G/C-content rul	le			61,8	B	°C					
		or the double stra	nded hybrid :									
AGI AHI	ΔS		-189.1 /	-797.0 /	-2040.2	2	kJ / mol					
Code for deg	enerated base	positions (wobble	positions IUB Cod	de)								
S = G/C	Y = C/T	M = A/C	H = A/C/T	D = A/G/T	N =	A/0	C/G/T	x =	Modif.			
W = A/T	R = A/G	K = G/T	B = C/G/T	V = A/C/G	I =	In	osin s	s =	Thioate	2		

250 nmole DNA oligo, 20 bases

5'- GAC GCA AAA ACA AAA GCA AA -3'

-				-				
P	ro	D	e	n	R	e	S	
100		-		707	576		1750	

Tm (50mM NaCl): 50.9 °C GC Content: 35. % Molecular Weight: 6,154.1 nmoles/OD260: 4.6 ug/OD260: 28.2 Ext. Coefficient: 218,600 L/(mole·cm)

Modifications And Services

Standard Desalting

mount Of Oligo								
34.0 =	155.5	=	0.96					
OD 260	nMoles		mg					

Quantity

1

Shipped To

NYS DEPARTMENT OF HEALTH WADSWC ESP -WCLR BIGGS LABS #E224 ALBANY, NY 12237 USA 5184743853 Customer No. **DOCU** PO No. **COUNT**

Secondary Structure Calculations

Lowest folding free energy (kcal/mole): -0.31 at 25 °C Strongest Folding Tm: 29.0 °C

Aligo Base Types	Quantity
A Bases	20

Disclaimer

See on reverse page notes (I) (II) & (III) for usage, label license, and product warranties

439	09578	XX	1171-	Y	4390	9578		CIL	Л
J.ISAB 836051	ELLE	2/18/2005			J.ISAB	LLE	2163		
GAL	C-E2-R				GAL	>-E2-!	R		
		MW=	C 164 1	-	3 040.00 Tm= 5				154

• Lyophilized contents may appear as either a translucent film or a white powder. This variance does not affect the quality of the oligo

been dislodged during shipping.

Concept: 0.1 nMoles/ μ L = 100 μ M

Primer reported Amount: 155.5 nMoles

If you want a **Stock Solution** of 100 uM, resuspend oligo in 1555 μ L of ddH₂O or TE buffer:

•155.5 nMoles / 1550 μ L = 0.1 nMoles/ μ L = 100 μ M

If you want a **Working Solution** of 10 uM make a 1:10 dilution from the stock:

- Add 1.0 μ L from Stock (100 μ M) to 9.0 of ddH₂O or TE buffer (1:10).

•100 μ M x 1 μ L / 10 uL = **10** μ M

Concentration in your final PCR mix: $C_1V_1 = C_2V_2$

•10
$$\mu$$
M x V₁ = 0.3 μ M x 20 μ L \longrightarrow V₁ = 0.3μ M x 20 μ L = 0.6 μ L 10 μ M

http://www.idtdna.com/Calc/resuspension/

Primer reported Amount: $155.5 \text{ nMoles} = 0.96 \text{ mg} = 960 \text{ }\mu\text{g}$

If you want a **Stock Solution** of 1 μ g/ μ L, resuspend oligo in 960 μ L of ddH₂O or TE buffer:

•960 μ g / 960 μ L = **1.0 \mug/\muL = 1000 ng/\muL**

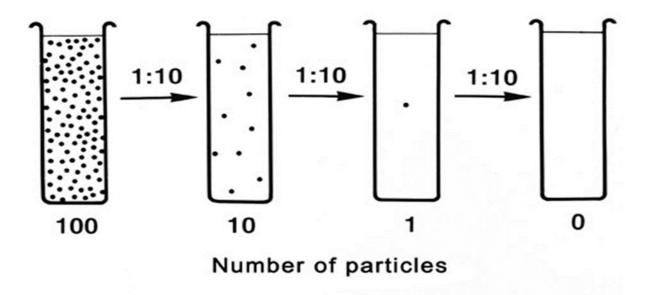
If you want a **Working Solution** of 100 ng/µL make a 1:10 dilution from the stock:

- Add 1.0 μ L from Stock (1 μ g/ μ L) to 9.0 μ L of ddH₂O or TE buffer (1:10).

•1000 ng x 1 μ L / 10 μ L = **100 ng/\muL**

Concentration in your final PCR mix: $C_1V_1 = C_2V_2$

•100 ng/ μ L x V₁ = 3 ng/ μ L x 20 μ L \longrightarrow V₁ = <u>3 ng/ μ L x 20 μ L = 0.6 μ L 100 ng/ μ L</u>


http://www.idtdna.com/Calc/resuspension/

Prepare Stock Solution and Working solution for primers forward and reverse to amplify exon 5 of the ABCD1 gene.

You have received:

ABCD1-E5-F1: 183.5 nMoles ABCD1-E5-R1: 354.8 nMoles

Once prepared your primers do the calculations needed to run a PCR reaction using a 0.25 uM concentration for each primer in a 20 uL total volume PCR.

