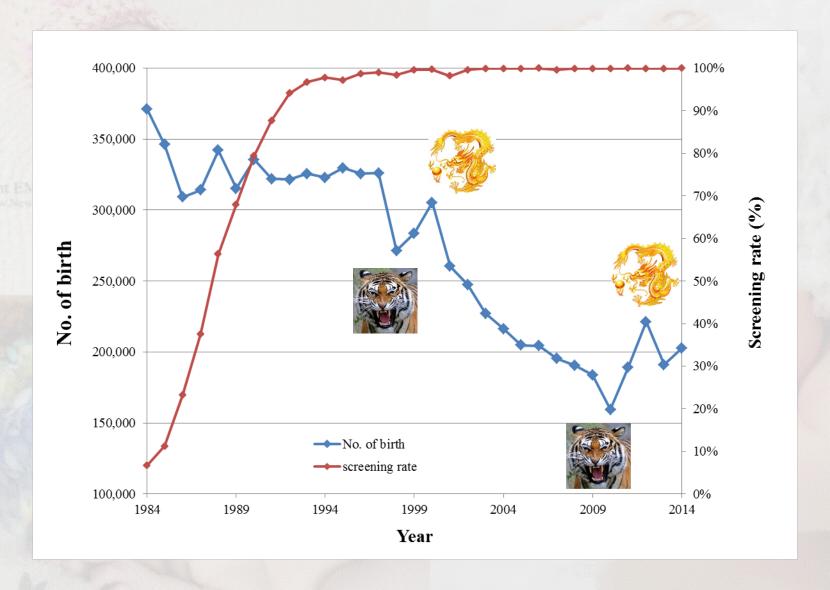
Newborn Screening and Studies of Lysosomal Storage Diseases in CFOH

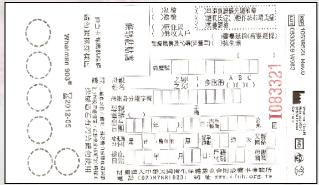


Chinese Foundation of Health National Yang-Ming University

Director: Dr. Chuan-Chi Chiang

Speaker: Hsuan-Chieh Liao (Joyce)

Newborn Screening rate in Taiwan


The newborn screening rate reaches more than 99% after 2002 in Taiwan.

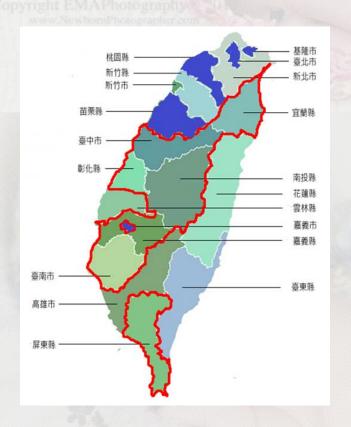
Timeline for newborn screening

Day after birth 1 2 3 4 5 6 7 8

Feeding Specimen Collection Dry and Deliver the Specimen Positive cases within 72 hours

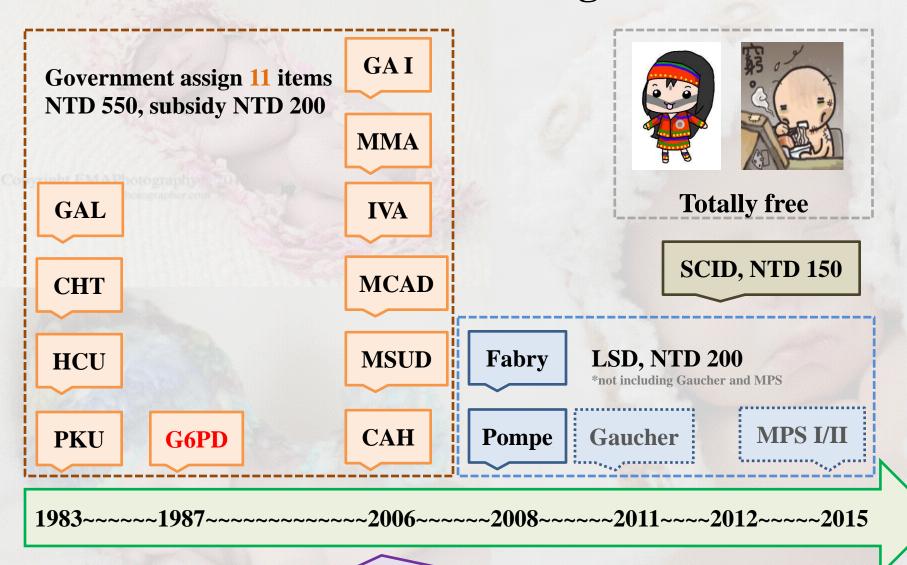
Time of DBS collection:

48 hours after birth or 24 hours after feeding



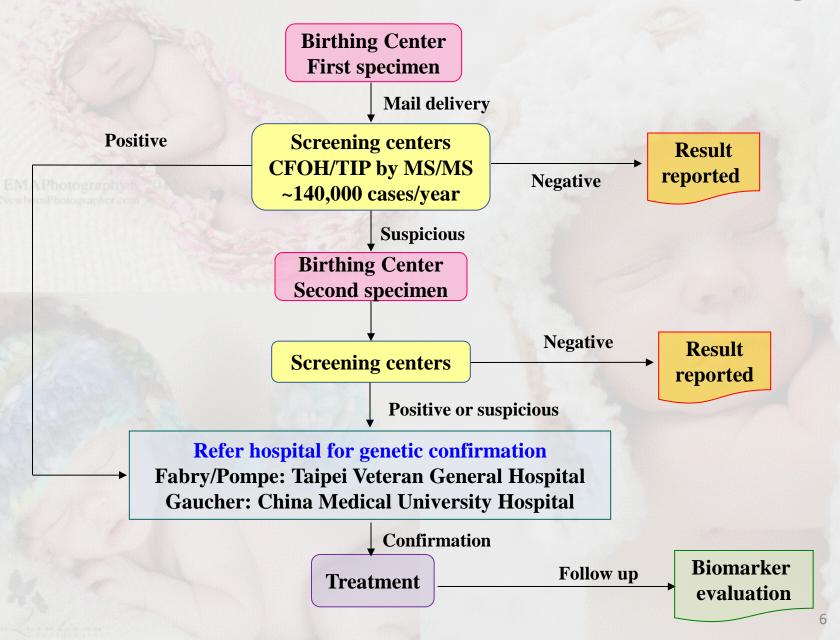
Newborn screening centers in Taiwan

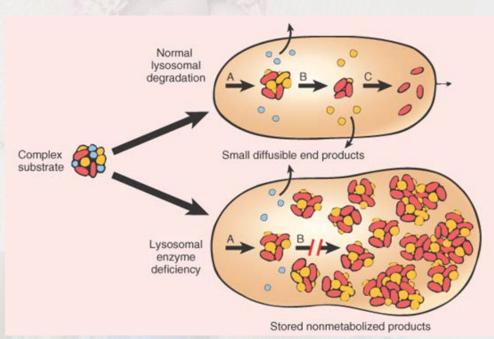
National Taiwan University Hospital Taipei Institute of Pathology


The Chinese Foundation of Health

*60,000-70,000 cases/year/center *Region: 5 Counties, 2 Cities

	2014	2013
Sample collection (within 3 days)	99.3%	99.2%
Sample delivery (within 2 days)	98.8%	98.4%
Inform positive cases (within 3 days)	100%	100%
Finish all procedures (within 8 days)	99.5%	99.4%

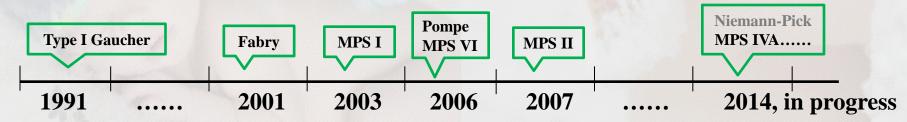

Newborn screening items


20 MS/MS items (organic/fatty/amino acid), free

Total: NTD700 (USD22)

The Flow Chart of LSD Newborn Screening

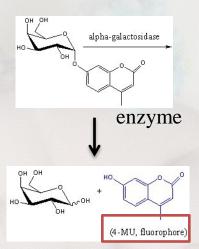
Lysosomal Storage Diseases (LSDs)


MBBS medicine (Humanity First): Genetic disease

*Newborn screening *Biomarker evaluation

Prof. Y. T. Chen for Pompe ERT

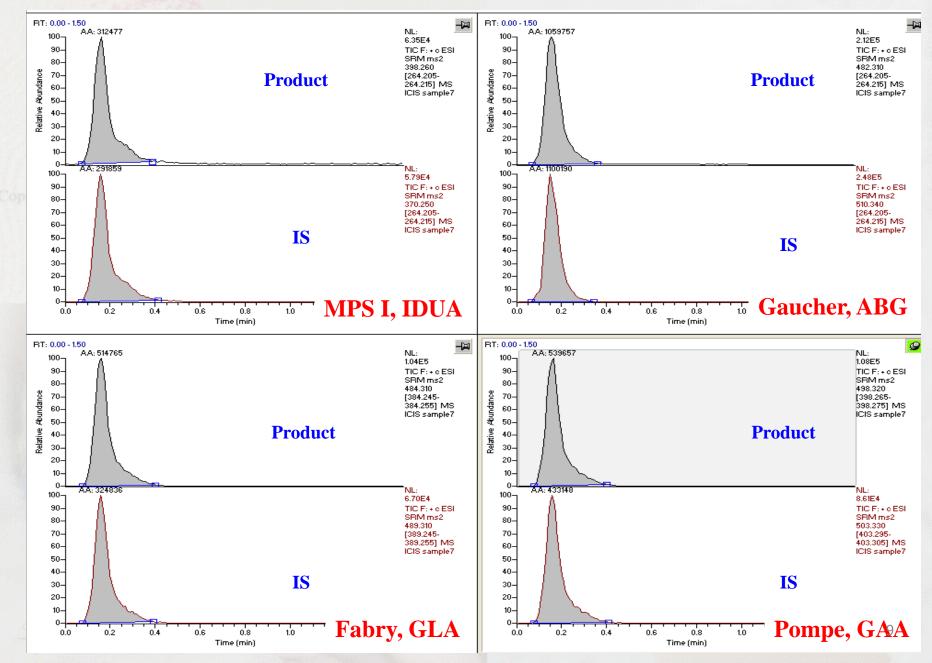
Timeline for enzyme replacement treatment approved

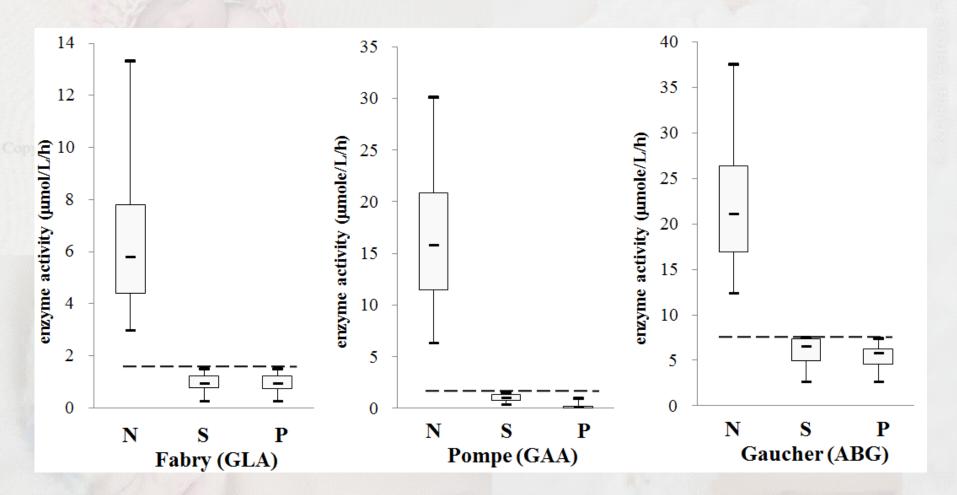


Newborn screening methods for LSDs

Method 1	Method 2		
Fluorescence (4-MU)*	HPLC-MS/MS		
Single assay	Multiplex 🖒		
According to Dr. Chamoles	According to Dr. Gelb		
Cheaper for single assay** Hb interference	More sensitive and specific, less laborious for multiplex		
From 2008-2009 (CFOH) From 2008-2011 (TIP) From 2006-now (NTUH)	From 2010 - now From 2012 - now From 2015 (processing?)		

^{*}Digital microfluidics was developed from conventional 4-MU substrates.

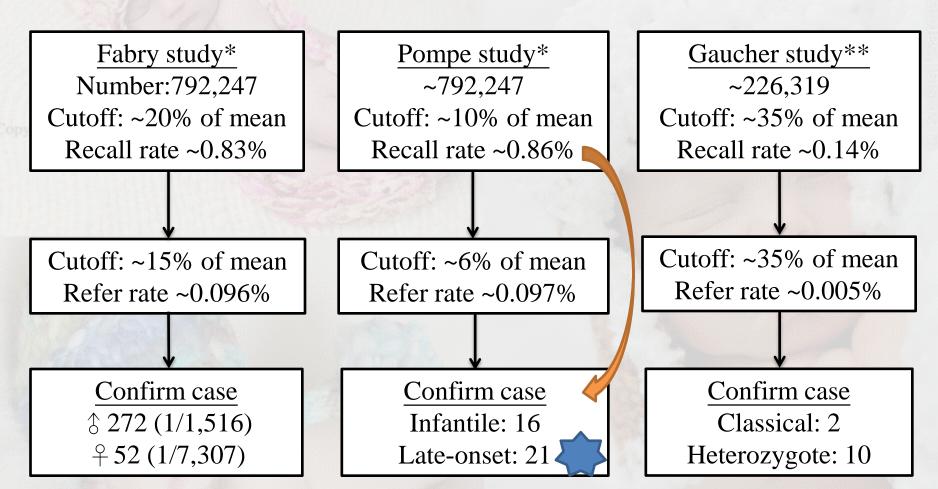




^{**}By traditional 4MU method and own plate reader

FIA-MS/MS of LSD screening

Overview of the first DBS enzyme activity by MS/MS method


Error bars are 5th and 95th percentiles. Dotted lines are cutoff values for normal activity.

N= enzyme activity in health newborn.

S= suspected newborns with decreased enzyme activity and referred to the hospital.

P= newborns confirmed by genetic mutation analysis.

Recall and refer rate of LSD screening

^{*4}MU method from 2008-2009 in CFOH and 2008-2011 in TIP MS/MS method from 2010-2014 in CFOH and 2012-2014 in TIP

**MS/MS method from 2010-2014 in CFOH

Confirmed cases enrolled from Fabry newborns screening

Mutation type	Mutation site	on site Number from newborn screenin	
Cardiac type	IVS4+919G>A	302 (85%)	
Classical type	6 mutations	7 (2%)	
	c.[394 G>A], p.G132R	1	
	c.[1034 C>G], p.S345X	1	
	c.[1066 C>T], p.R356W	1	
	c.[1081 G>T], p.G361X	2	
	c.[1087 C>T], p.R363C	1	
	c.[1228 A>G], p.T410A	1	
Non-classical/Novel	20 mutations	47 (13%)	
	c.[1078 G>T], p.G360C	8	
	c.[157 A>G], p.N53D	5	
	c.[1722 A>C], p.K391T	5	
	•••	•••	
Total		356	

^{*}Enzyme based screening can only identify a subset of mutation-positive patients

^{* ↑ 1/875; &}lt;del>+ 1/399

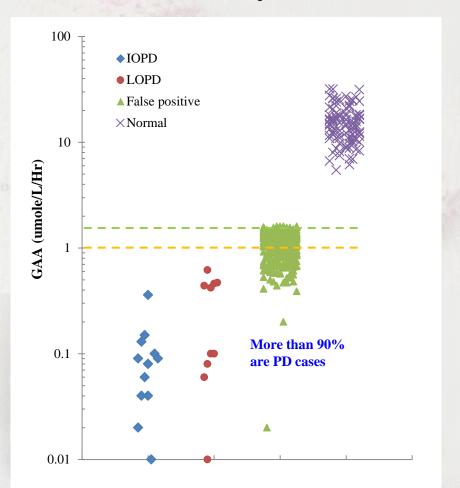
Comparison of 4-MU fluorescence and MS/MS methods in Fabry and Pompe studies in CFOH

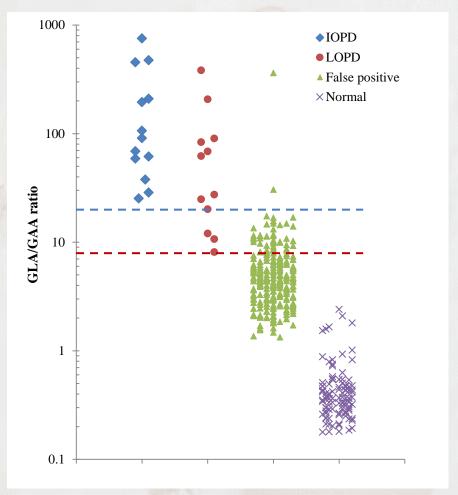
	Fabry		Pompe		
Method	4-MU	MS/MS	4-M U	MS/MS	
Period	2008.1 ~ 2009.12	2010.2 ~ 2013.1	2008.1 ~ 2009.12	2010.2 ~ 2013.12	
Number of screening newborn	122,890	191,767	122,937	247,611	
% of total newborn ^a	94.1	95.5	94.1	95.5	
Positive in first DBS	2,104	379	1,613	1,144	
% of screening newborn ^b	1.71	0.20	1.31	0.46	
Suspected newborn ^c	127	79	135	308	
% of screening newborn ^d	0.10	0.04	0.11	0.12	
Reject newborns ^e	22	12	10	11	
Confirmed newborn ^f	64	64	4	22	
Positive predict value %g (95% CI)h	61.0 (50.9-70.3)	95.5 (87.5-99.1)	3.2 (0.8-7.4)	7.4 (4.5-10.6)	

a. Newborns enrolled in LSDs study/ total routine newborns screening conducted at CFOH(%) b. Newborns with decreased newborns enrolled in LSDs study (%) c. Newborns with decreased enzyme activity in DBS and referred to hospitals d. Susp enrolled in LSDs study (%) e. Newborns who rejected to confirm f. Newborns confirmed by genetic mutation analysis g. Cor newborns- newborns who rejected to confirm) (%) h. CIs were calculated by Clopper-Pearson confidence method

*High prevalence (14.5%) of pseudodeficiency allele p.G576S in the 7

in the T


Mol Genet M


S/
ns
cted

S/
ns
cted

Dulation
28146

GAA activity and GLA/GAA ratio in Pompe patients

*GAA 10% \rightarrow 6% of mean, PPV 7% \rightarrow 17%

*GAA 10% of mean & GLA/GAA>8, PPV 7% \rightarrow 41%

*GAA 10% of mean & GLA/GAA>20, PPV 7% \rightarrow 93%

GAA activity and GLA/GAA ratio in Pompe screening

- **Different number of white cells or protein quantity, the GAA and other LSD enzymes would both go up or down together
- **Do <u>NOT</u> require any additional instrumentation, procedure, or sample collection
- **The cost and manpower is minimal
- **Reduce the false positive rate significantly
- **Also being used in the other newborn screening center (TIP)
- **Be careful about LOPD and IVS4 patients

Infantile-onset Pompe Disease (IOPD)

*Effective diagnostic protocol:

Am J Med Genet A. 2014 Jan; 164A(1):54-61.

1.Extremely low GAA DBS enzyme activity by MS/MS method

2.Hypotonia 3.Elevated CK (>250U/L) 4. Elevated LVMI (>80g/m^{2.7})

Case 1, 1st ERT 15-day-old c.1935 C>A, p.D645E, homozygous c.1726 G>A, p.G576S,homozygous CK: 542 u/L

GAA: 0.36 umol/L/hr)

LVMI: 154.5g/m^{2.7}

Case 2, 1st ERT 9-day-old, c.1935 C>A, p.D645E, homozygous c.1726 G>A, p.G576S,homozygous CK: 766 u/L GAA: 0.04 umol/L/hr)

GAA: 0.04 umol/L/hr)
LVMI: 191.5 g/m^{2.7}

17

Recall and refer rate of LSD screening

Fabry study*

Number: 792,247

Cutoff: ~20% of mean

Recall rate ~0.83%

Cutoff: ~15% of mean Refer rate ~0.096%

Pompe study* ~792,247

Cutoff: ~10% of mean

Recall rate ~0.86%

Cutoff: ~6% of mean Refer rate ~0.097%

Confirm case

Infantile: 16

Late-onset: 21

*4MU method from 2008-2009 in CFOH and 2008-2011 in TIP MS/MS method from 2010-2014 in CFOH and 2012-2014 in TIP

Gaucher study**
~226,319
Cutoff: ~35% of mean

Recall rate ~0.14%

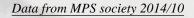
Cutoff: ~35% of mean Refer rate ~0.005%

Confirm case

Classical: 2

Heterozygote: 10

**MS/MS method from 2011-2014 in CFOH


Analytical range for MS/MS and 4MU LSD assays

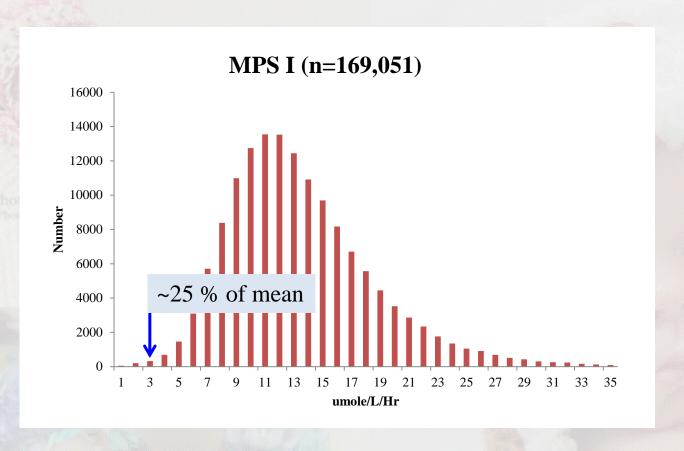
Disease	Ratio of normal mean/ patient mean		Ratio of normal mean/ no blood (blank)	
	UW 2014 MS/MS	4MU	UW 2014 MS/MS	4MU
Fabry	28	6.1	109	
Gaucher	67	3.7	216	
Pompe	63	5.0	367	12
MPS-I	168	7.4	230	20
MPS-II	60	3.9	80	11
Krabbe	27		85	
Niemann	26		104	

^{*}Data from Prof. Michael Gelb's PPT at APHL and online video

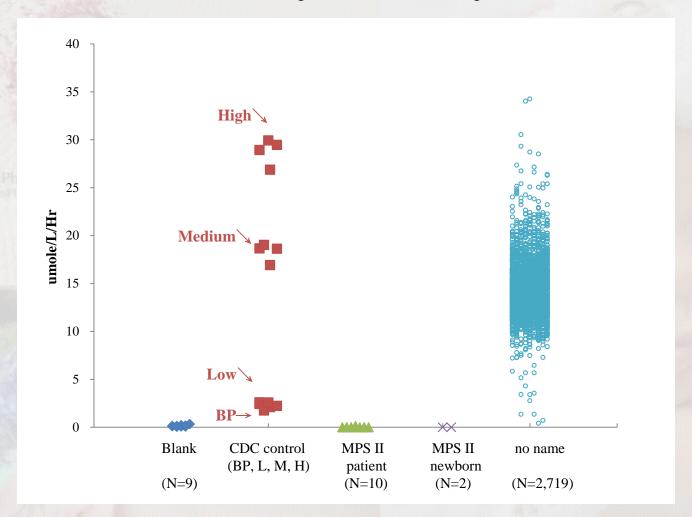
Pilot study of MPS screening in Taiwan

	Alive	Total
Type I	11	16
Type II	29	112
Type III	25	37
Type IV	17	32
Type VI	9	15
Total	91	212

http://www.mpssociety.org.tw/


在台點多醣病量不算少,「那時」就來容易做來難,到處找尋點多餘症兒一家庭的際夫妻頻頻碰壁,在朋友家庭的際夫妻頻頻碰壁,在朋友

(四) 會的父母產與道,我是推興的 (四) 自關的玩笑話,點出黏 (1) 一句自關的玩笑話,點出黏 (1) 無數的會理事長蔡瓊瓊的等級更更 (2) 不退的勇豪。


Overview of DBS enzyme activity in MPS I assay by MS/MS method

*Recall rate would be 0.08% (136). Incidence: ~1/42,263

Case 1	c.571G>C, c.1093C>G
Case 2	c.535A>T, c. 1643C>T
Case 3	c.76G>A, c. 911delT
Case 4	c.571G>C, c.1093C>G

Overview of DBS enzyme activity in MPS II assay

^{*}All the MPS II could be distinguished clearly from normal by MS/MS method.

^{*}Substrate: from Prof. Michael Gelb, will be commercialized by PE in near future

^{*}The pilot study of large screening in WA and CFOH NBS lab

Analysis of enzyme activity and metabolite of LSD in CFOH

Disease	Item Enzyme activity		Metabolite / Biomarker		
		4-MU	MS/MS		
Fabry	α-Galactosidase	V	V		
	GB-3 (urine/plasma)	fi.		V (MS/MS)	
	Lyso GB-3 (urine/plasma)			V (MS/MS)	
Pompe	α-Glucosidase	V	V	3/4/	
	Glc 4 (urine)		4	V (MS/MS)	
Gaucher	β-Glucocerebrosidase	V	V		
	CCL18 (plasma/DBS)	1		V (ELISA)	
	Chitotriosidase			V (4-MU)	
Niemann-Pick A/B	Acid sphingomyelinase		V	F	
Krabbe	Galactosylceramidase		V		
MPS I	α-L-Iduronidase	0	V		
MPS II	Iduronate-2-sulfatase	0	V	○ (MS/MS for Dermatan sulfate,	
MPS IIIA	Sulfamidase	0	Δ	Heparan sulfate,	
MPS IVA	Galactose 6-sulfatase	0	Δ	Chondroitin sulfate	
MPS VI	Arylsulfatase B	0	Δ	Keratan sulfate)	
All MPS	GAG (urine/plasma)			V (Alcian blue)	

Future work for LSD screening in CFOH

*Newborn screening:

-- MPS II, IVA, and VI, following MPS IIIA and IIIB

*Biomarker analysis

- -- LysoGb3 for Fabry disease
- -- CK for Pompe disease
- --Glucosylsphingosine for Gaucher disease
- --Sulfatides for MLD
- -- C26-LPC for X-ALD

*This may be permit enzyme activity and biomarkers to be quantified in a single, first-tier newborn screening run lasting <2 min per sample

^{**}LSD video one line from Prof. Gelb

Acknowledgement

- Taipei Institute of Pathology
 - MS/MS data collect
- Taipei Veteran General Hospital
 - -Fabry/Pompe confirmation, F/U
- Chinese Medicine University Hospital
 - -Gaucher confirmation, F/U
- Prof. Michael H. Gelb
 - -Technical advice

The website of Chinese Foundation of Health

THANK YOU FOR YOUR ATTENTION!

▶ 關於我們

▶ 檢驗項目

► 篩檢查詢

▶ 轉介醫院

▶ 採集機構

▶連絡我們

財圖法人中華民國衛生保健基金會 新生兒篩檢中心

相信在每一個成員的努力,一定能有更優於今日之豐碩成果,為新生兒把好第一關!

地址: 11070 台北市信義區東興路55號5樓 電話: (02)8768-1020·傳真: (02)8768-1021·E-mail:kao@cfoh.org.tw

