

LC-MS/MS: Multiplexed Assay to Detect Five (actually six) Lysosomal Storage Disorders

George Dizikes, PhD Illinois Department of Public Health Chicago, IL george.dizikes@illinois.gov

Atlanta, GA April 16, 2015

LSD Testing Timeline for the State of Illinois

2007 – Legislative mandate for five LSDs (Krabbe, Pompe, Fabry, Gaucher, Niemann-Pick A/B)

2010 – Pilot screening for Pompe, Fabry & Gaucher using microfluidic platform

- o 8,012 DBS screened
- Two had abnormal GAA activities, shown to be negative for Pompe by second-tier tests
- Five confirmed-positive Fabry (GLA)
- Two confirmed-positive Gaucher (ABG)

LSD Testing Timeline (cont'd)

- 2011 Legislative mandate expanded to seven LSDs (addition of Hurler and Hunter), with the following provisions before screening:
 - A method either cleared by the US Food and Drug Administration (FDA) or validated under the Clinical Laboratory Improvement Amendments (CLIA)
 - Availability of quality control and proficiency testing materials
 - Appropriate equipment for high-volume screening
 - Adequate funding

LSD Testing Timeline (cont'd)

- 2011– Decision made to switch from microfluidic platform to tandem mass spectrometry
 - Microfluidic platform did not have substrates for all LSDs.
 - Microfluidic platform lacked throughput for Illinois' volume (~170,000 newborns per year).
 - Recent developments with multiplex MS/MS promised adequate testing throughput for more disorders and with less staff.

2013 – Acquisition of equipment and staff; method development

- 2014 Method validation and limited pilot testing
- 2015 Statewide testing expected to begin mid-year

Multiplex LC-MS/MS Assay

Modification of method developed at the University of Washington for six LSDs: Krabbe, Pompe, Fabry, Gaucher, Niemann-Pick A/B, Hurler (MPS-I).

- Single DBS punch
- Single buffer
- In-line chromatographic purification (no solid-phase or liquid extraction)
- Three-hour incubation (maintains work flow).
- UPLC column separates product/ISTD pairs and removes salt, detergent, & phospholipids by valving.
- 2.5 minute injection cycle, 500 injections/instrument/ day, >10,000 injections/PM.

6-Plex Assay

Final Composition of Assay Cocktail & Assay Conditions*

Ammonium formate	0.1 M, pH 4.4
Sodium cholate	10 g/L
Acarbose	0.08 M
N-Acetyl-α-galactosamine	50 mM
IDUA Substrate (S), Internal Standard (IS) GLA S, IS GAA S, IS ASM S, IS (d7-C6 Ceramide) GALC S, IS (d7-C8 Ceramide) ABG S, IS (d7-C12 Ceramide)	500 μM, 3.5 μM 600 μM, 1.2 μM 200 μM, 2.0 μM 150 μM, 2.5 μM 450 μM, 2.5 μM 300 μM, 2.5 μM

3 h/17 h incubation at 37 $^{\circ}$ C

- Reaction was quenched with 200 µL acetonitrile (ACN) and centrifuged for 5 min at 1000 x g.
- 100 µL top layer was transferred to a glasslined plate, and 100 µL MS-grade water was added to each well.

*Spacil Z, Tatipaka H, Barcenas M, Scott CR, Turecek F, Gelb MH. Clin Chem. 2013 Mar;59(3):502-11

Acquity TQD Instrument

Retention Times (RT, min) for Substrates and Products of GAA, GALC, and ABG

Enzyme	Substrate RT	Product RT
GAA	0.53	0.59
GALC	0.86	0.96
ABG	1.08	1.23

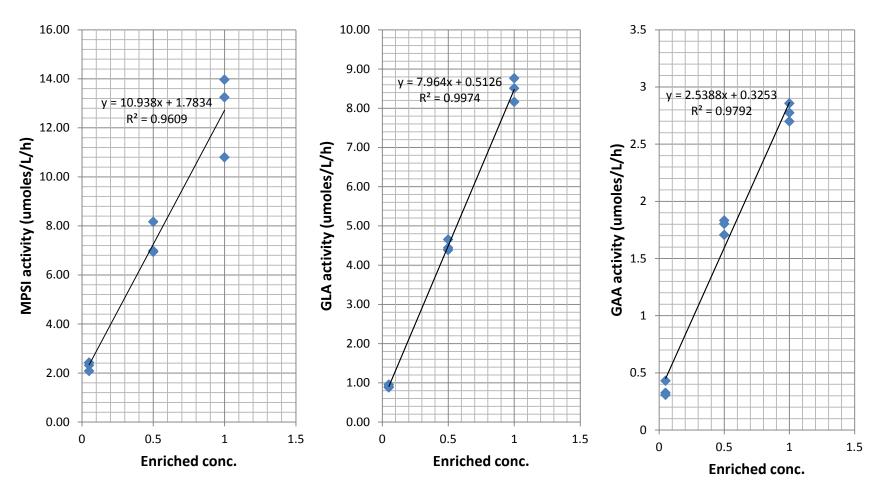
UPLC Chromatogram

Chromatogram - [03202013_MALE_Plate_20_10]				_						_ 0 <u>_ X</u>
] File Edit Display Process Tools Window Help		A 101								_ 8 x
第 ▲ 丞 ● ● ● ● ● ● ● ● ▲ ▲ ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ● ● ▲ ●	<u>β</u> ² (ੈ) (Q ⁺ Q [×] (π ε ∉)		D-TQD#QBB1465	;					3: MRM of 6	013 19:36:40 5 Channels ES+ 11.2 (ABG_d7IS) 7.57e6
				ABG-IS ABG-P GALC-IS GALC-P ASM-IS ASM-P						
	GAA-IS GAA-P GLA-P GLA-IS									
IDUA-P										Time
0.20 0.40 0.60 0.80 1.00	1.20 1.40 1.60 1	.80 2.00 2.20	2.40 2.60 2	2.80 3.00 3.20	3.40 3.	60 3.80	4.00 4.2	20 4.40	4.60 4	4.80
🚯 🚞 🚯 🥑										

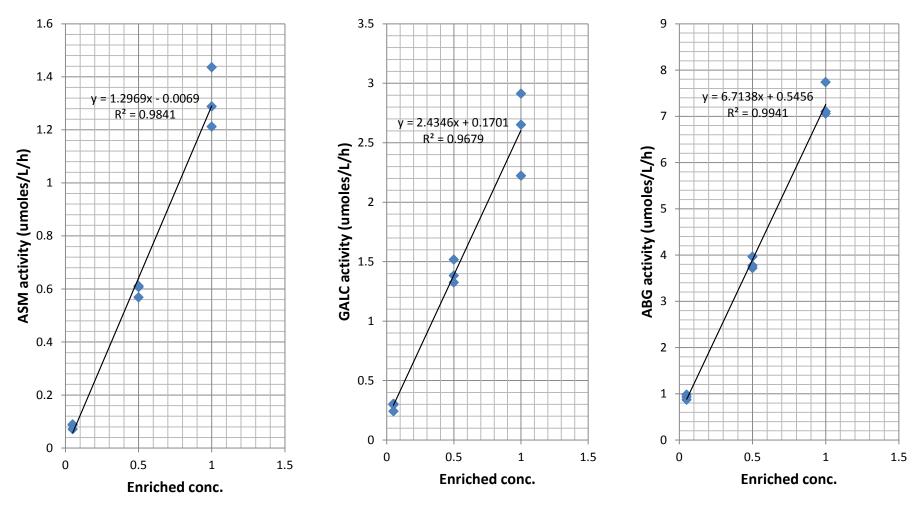
Validation of Final Method

- Evaluate different levels of Quality Control samples (Low, Medium, and High).
- Perform precision studies.
- Perform accuracy studies.
- Participate in the CDC pilot Proficiency Testing (PT) program for Pompe and Krabbe.
- Obtain DBSs from confirmed cases.

Method Validation (cont'd)


- Test de-identified specimens from male, female, low birth weight, and 7+ day-old babies.
- Study the effects of detergents and DBS storage conditions on LSD enzyme activities.
- Refine cutoff values
- Exchange specimens with a qualified testing laboratory to establish comparability of results.

CDC QC levels for IDUA, GLA & GAA

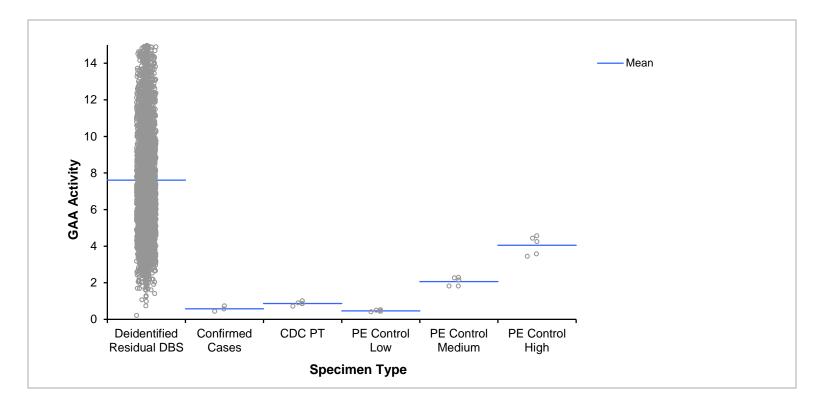

(MPS-I, Hurler) (Fabry)

(Pompe)

CDC QC Levels for ASM, GALC & ABG (Niemann-Pick) (Krabbe) (Gaucher)

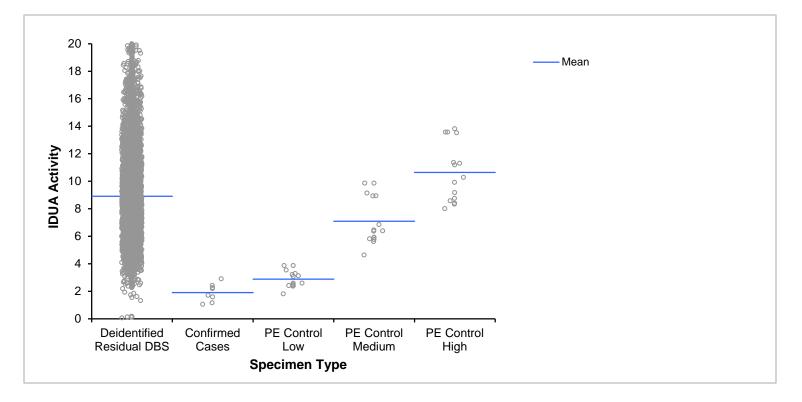
Normal and Abnormal Ranges as Percent of Daily Median Activity

	Normal Range	1 st Cut-off (Percentile)	Borderline (Percentile)	2 nd Cut-off: presumptive positive (Percentile)
IDUA	> 31%	≤ 35% (0.25)	> 28 and ≤ 31% (0.12)	≤ 28% (0.09)
GLA	> 18%	≤ 20% (0.10)	> 13 and ≤ 18% (0.09)	≤ 13% (0.03)
GAA	> 28%	≤ 30% (0.40)	> 23 and ≤ 28% (0.27)	≤ 23% (0.16)
ASM	> 15%	≤ 20% (0.03)	> 11 and ≤ 15% (0.02)	≤ 11% (N/A)
GALC	> 13%	≤ 20% (0.32)	No Borderline	≤ 15% (0.11)
ABG	> 20%	≤ 25% (0.15)	> 17 and ≤ 20% (0.09)	≤ 17% (0.05)

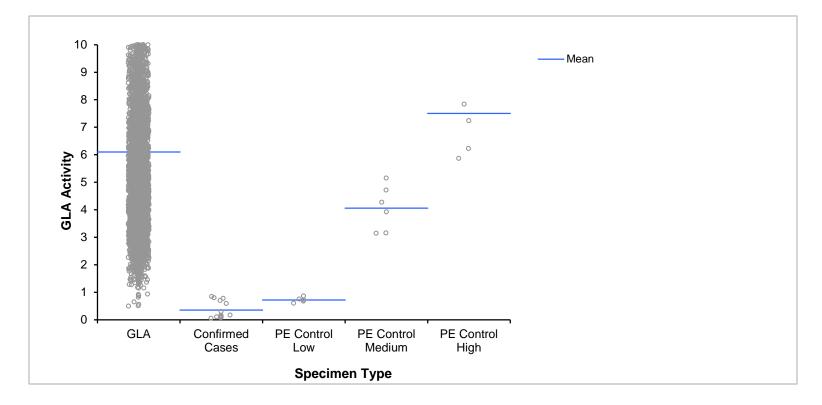


Specimen Exchange

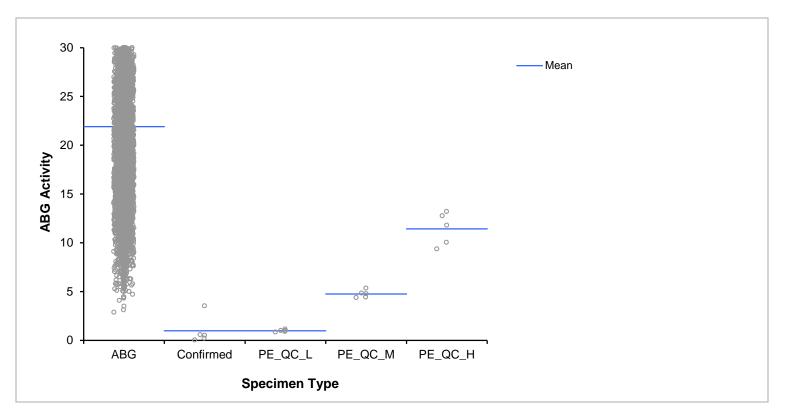
- Once confidence in the method has been established, test identified specimens prospectively and send those with activities below a generous first cutoff to a qualified (i.e., CLIA-certified) laboratory.
- Compare second cutoff results with results from the certified laboratory.
- Send reports from the certified laboratory to submitters and short-term follow-up program.
- Reconsider the role of other stakeholders and the value of communication in this process.


Assay Results for GAA (Pompe)

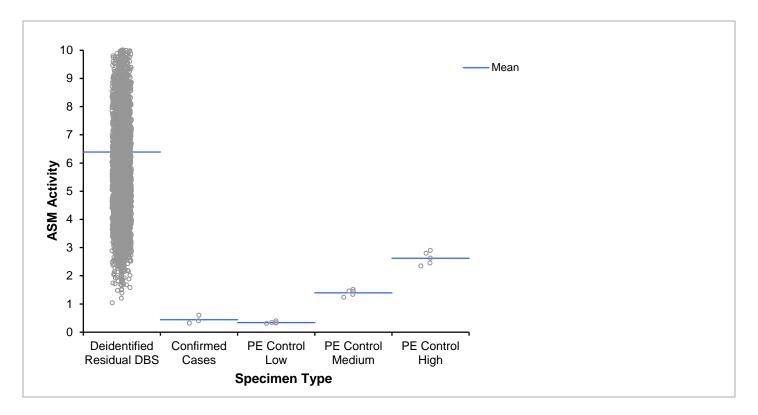
	n	Min	Mean	Max
Deidentified Residual DBS	12392	0.21	7.605	83.96
Confirmed Cases	3	0.43	0.575	0.73
CDC PT	5	0.71	0.866	1.01
PE Control Low	5	0.41	0.461	0.52
PE Control Medium	5	1.81	2.065	2.29
PE Control High	5	3.44	4.051	4.56


Assay Results for IDUA (MPS-I)

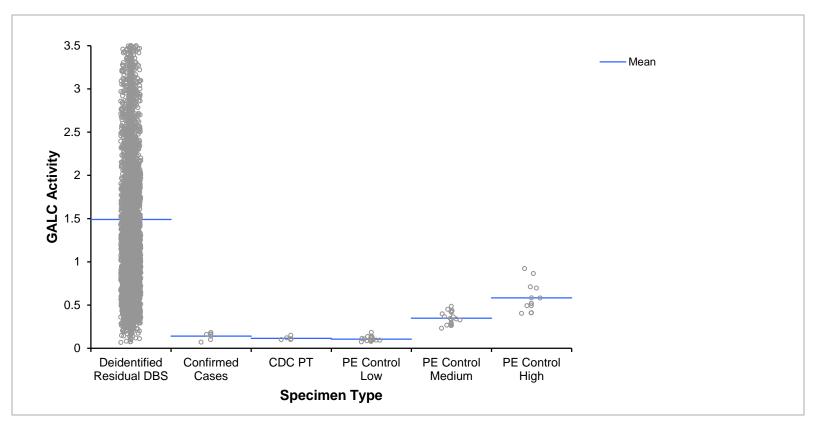
	n	Min	Mean	Max
Deidentified Residual DBS	12396	0.06	8.912	130.31
Confirmed Cases	8	1.05	1.906	2.90
PE Control Low	15	1.809	2.8751	3.859
PE Control Medium	15	4.630	7.0926	9.857
PE Control High	15	8.011	10.6463	13.806


Assay Results for GLA (Fabry)

	n	Min	Mean	Max
Deidentified Residual DBS	12391	0.49	6.098	646.51
Confirmed Cases	14	0.06	0.350	0.84
PE Control Low	5	0.60	0.721	0.86
PE Control Medium	6	3.14	4.059	5.15
PE Control High	5	5.86	7.505	10.37


Assay Results for ABG (Gaucher)

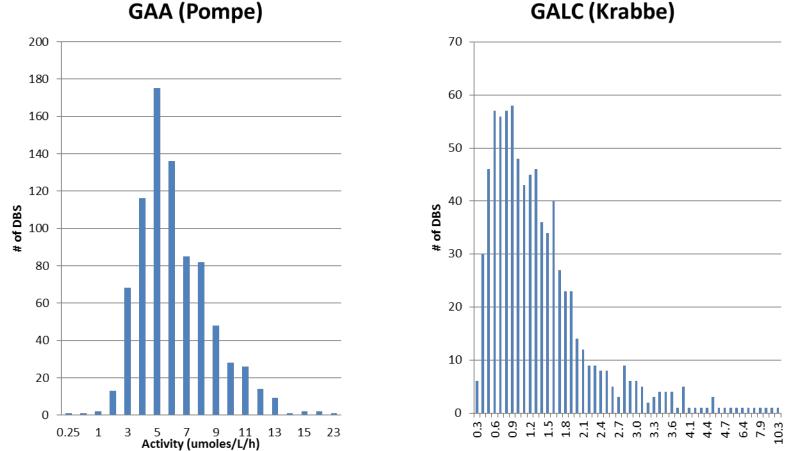
	n	Min	Mean	Max
Deidentified Residual DBS	12387	2.87	21.905	553.02
Confirmed Cases	5	0.04	0.976	3.53
PE Control Low	5	0.84	0.978	1.14
PE Control Medium	5	4.38	4.756	5.35
PE Control High	5	9.37	11.435	13.20


Assay Results for ASM (Niemann-Pick A/B)

	n	Min	Mean	Max
Deidentified Residual DBS	12385	1.04	6.391	6317.28
Confirmed Cases	3	0.32	0.440	0.60
PE Control Low	5	0.311	0.3370	0.392
PE Control Medium	5	1.234	1.3954	1.510
PE Control High	5	2.346	2.6216	2.894

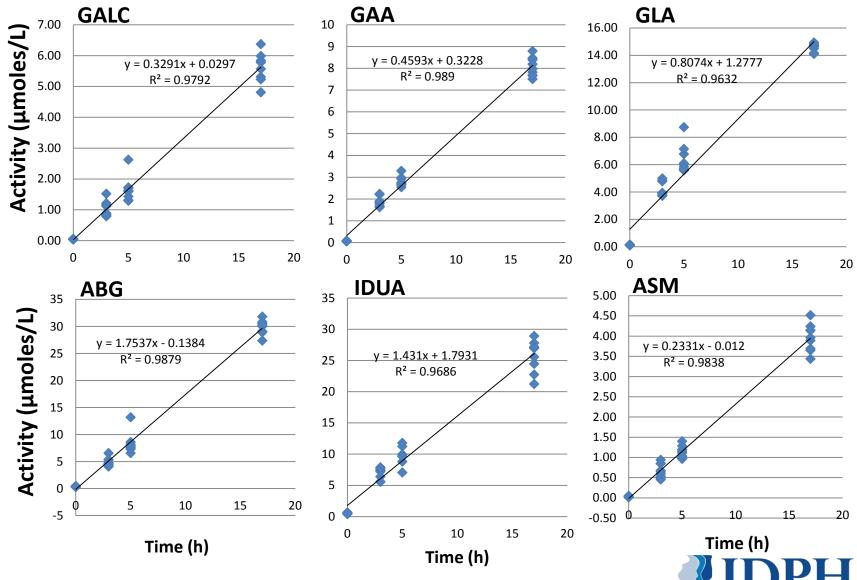
Assay Results for GALC (Krabbe)

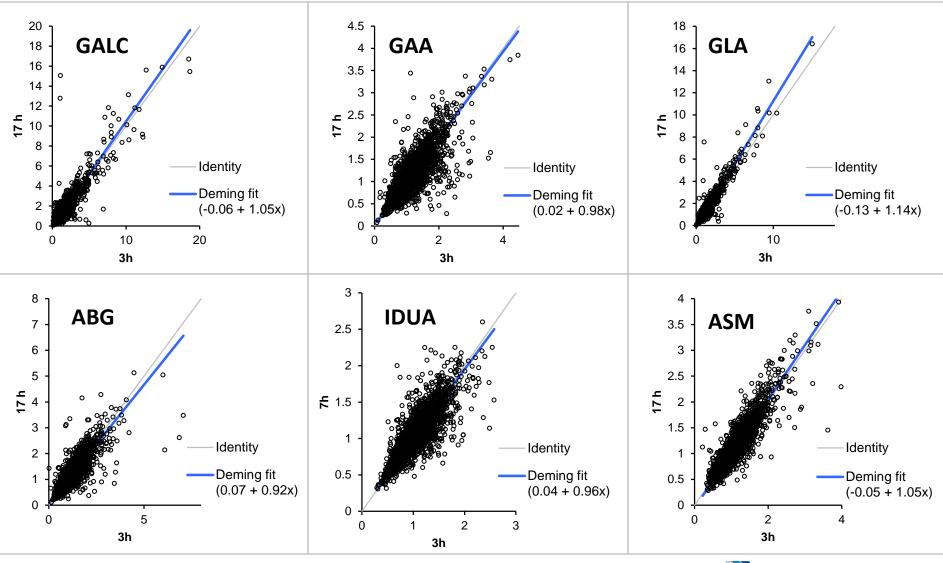
	n	Min	Mean	Max
Deidentified Residual DBS	12222	0.07	1.49	34.49
Confirmed Cases	7	0.07	0.14	0.18
CDC PT	5	0.10	0.12	0.15
PE Control Low	21	0.07	0.11	0.18
PE Control Medium	20	0.23	0.35	0.48
PE Control High	13	0.40	0.58	0.92



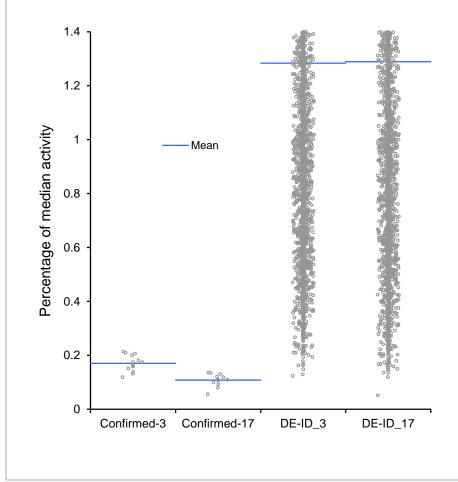
Summary of IDPH-CLIA Laboratory Comparison (n~12,000)

	FABRY	GAUCHER	KRABBE	MPS I	NIEMANN PICK A/B	POMPE
Number of Normal Specimens sent to CLIA Lab	69	66	72	54	74	62
Number of Specimens Below 1st Cut-off sent to CLIA Lab	6	9	37	21	1	13
Positives and Borderlines Determined by IDPH	4	4	8	16	1	9
Positives Confirmed by CLIA Laboratory	0	1	4	7	1	2
Diagnosed Cases	0	1	0	0	1	0
Other Resolutions (PD: Pseudodeficiency)			1 PD 2 Carrier 1 Normal	5 PD 1 Normal 1 Lost to follow-up		1 PD 1 Carrier


Specific Activity Distribution for GALC and GAA


Activity (umoles/L/h)

Linearity of Enzyme Reactions



3 h vs 17 h Assays – Percent of Median Activities

Comparison of 3 h to 17 h incubation for GALC

Longer incubation improves discrimination between confirmedpositive and presumednegative specimens, increasing specificity.

Lessons Learned

- Many different individuals with a wide range of skills need to work together to successfully develop a complex, high-throughput analytical assay.
- The process will take longer than initially anticipated; regular interactions and good communications are vital.
- MS/MS platform permits expanded test menu and multiplexing with a single injection.

Lessons Learned (cont'd)

- There are many challenges in adapting a research procedure to a high-throughput newborn screening assay (e.g., analytical, personnel, physical plant, and IT). FDA-cleared tests are preferable.
- If at all possible for mandated testing, have legislation or administrative rules written to permit adequate preparation and milestones (e.g., method validation, QC and PT availability, acquisition of high volume equipment, & funding).

Conclusions

- Very useful for high-throughput newborn screening for six lysosomal enzymes
- Can be adopted to screen 1-6 enzymes depending upon laboratory requirements
- Using 3 hour incubation, first screening results can be obtained within 24 hours of specimen receipt, and positive results can be released after an additional 24 hours.
- For Krabbe, 17 hour incubation should be used for evaluating second cut-off.

Acknowledgments

<u>IDPH</u>

- Khaja Basheeruddin, Ph.D. Unit Supervisor
- Rong Shao, M.D. Laboratory Research Scientist
- Fran Balster Clinical Laboratory Technologist
- Pearlie Gardley Clinical Laboratory Technologist
- Tamara Simulick Clinical Laboratory Technologist

<u>Others</u>

- Barbara K. Burton, M.D. Lurie Children's Hospital
- Michael H. Gelb, Ph.D. University of Washington
- Joseph J. Orsini, Jr., Ph.D. Wadsworth Center
- Michele Caggana, Sc.D., FACMG Wadsworth Center
- Carlos A. Saavedra-Matiz, M.D. Wadsworth Center
- Dietrich Matern, M.D., Ph.D Mayo Clinic
- CDC Newborn Screening and Molecular Biology Branch
- PerkinElmer Corporation

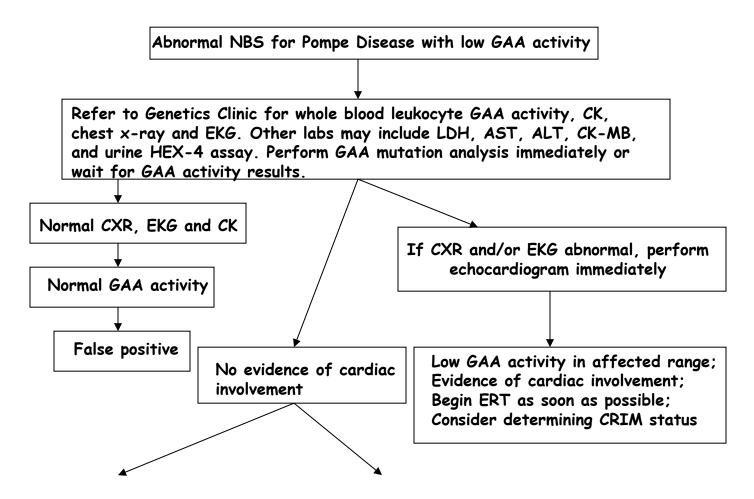
THANK YOU

George Dizikes, Ph.D. Illinois Department of Public Health 2121 W. Taylor Street Chicago, IL 60612 312-793-4745

george.dizikes@illinois.gov http://www.dph.illinois.gov

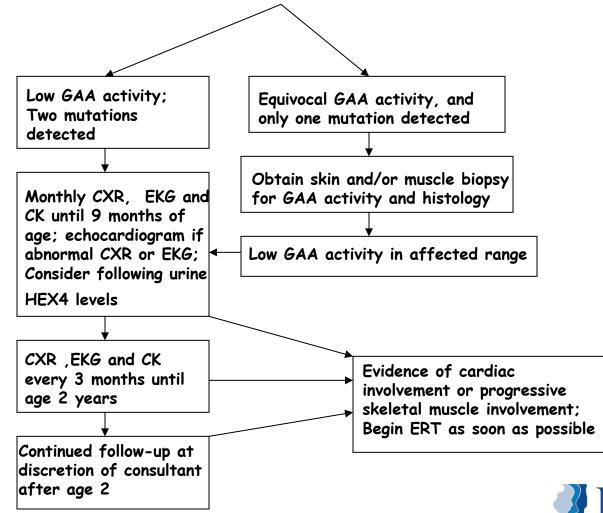
Update on Testing for Lysosomal Storage Disorders from the Illinois Newborn Screening Program – Pilot Testing and Beyond

George Dizikes, PhD Illinois Department of Public Health Chicago, IL george.dizikes@illinois.gov


Atlanta, GA April 17, 2015

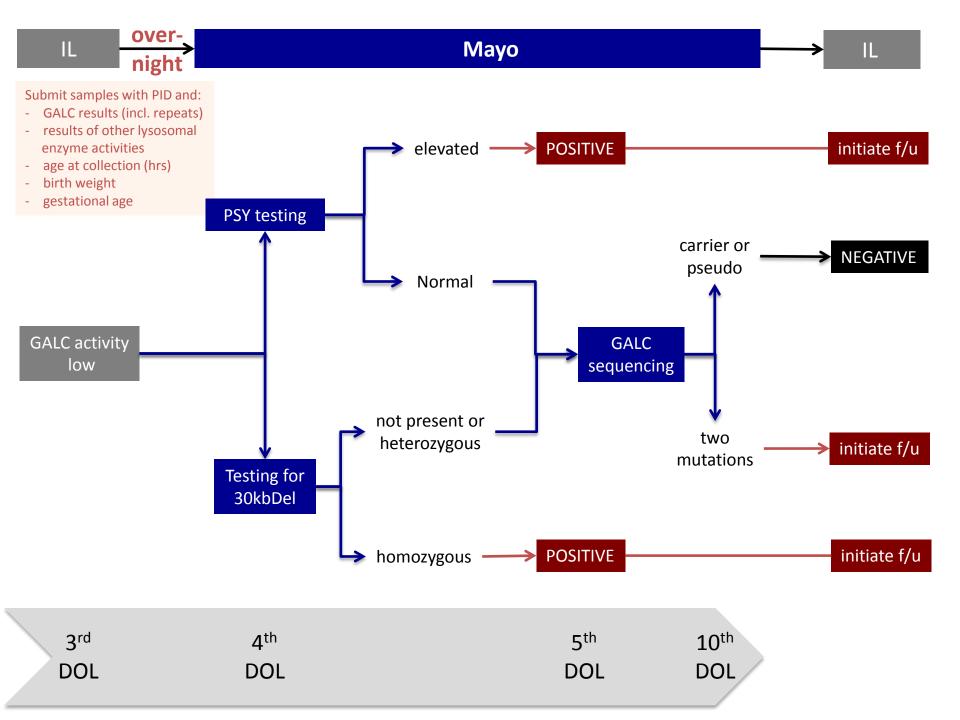
Prospective Pilot

- Limited pilot started in late 2014 with four hospitals; later expanded to eight in order to provide statistically valid daily median
- Database/LIMS considerations for lab, follow-up program, and submitters. Largest submitter on HL7 messaging
- Decision was made to begin pilot without Krabbe screening because of inability to arrange timely DNA testing
- Follow-up protocols in place for all disorders


Pompe Disease Follow-up Algorithm

(See Follow-up Algorithm, continued)

Pompe Disease Follow-up Algorithm (Continued)


New York State Proposed Timeline: Analytical Testing

SUN	MON	TUE	WED	THU	FRI	SAT
1 Infant born	2 NBS collected & mailed	3 NBS received, testing begins	4	5 Prelim Krabbe results, DNA started	6 Krabbe, DNA results; referral made	7
8	9 Infant seen, blood sent	10 Blood received	11 Low activity confirmed; HLA, identity done	12 Infant admitted	13 Work-up complete, UCB unit found (?)	14 Family Decision
15	16 Family arrives at transplant center	17	18 Chemo prep begins	19	20	21
22	23	24	25	26	27	28 Stem cell infusion

Decision to Postpone Krabbe Screening

- Limited options for DNA analysis
- Contract required to ensure uninterrupted second-tier analysis
- Insistence by follow-up specialists that DNA results accompany enzyme reporting, although concern is more with the number of unnecessary call outs rather than maintaining timeline for transplantation

Six-day Workflow for LSD Testing

Monday (4)	Tuesday (4)	Wednesday (5)	Thursday (6)	Friday (5)	Saturday
Specimen	Process	Print repeat list,	Process	Call out positives,	
receipt,	incubation,	punch repeats,	incubation, load	call/email about	
punch,	load MS/MS to	incubate O/N,	repeats on MS/MS	Krabbe DNA	
incubate O/N	run O/N	send out for	to run O/N		
		Krabbe DNA			
	Specimen	Process	Print repeat list,	Process incubation,	Call out positives,
	receipt, punch,	incubation, load	punch repeats,	load repeats on	call/email about
	incubate O/N	MS/MS to run	incubate O/N, send	MS/MS to run O/N	Krabbe DNA
		O/N	out for Krabbe		
			DNA		
Call out		Specimen	Process	Print repeat list,	Process
positives,		receipt, punch,	incubation, load	punch repeats,	incubation, load
call/email		incubate O/N	MS/MS to run O/N	incubate O/N, send	repeats on MS/MS
about				out for Krabbe DNA	to run until Monday
Krabbe DNA					
incubate	Process	Call out	Specimen receipt,	Process incubation,	Print repeat list,
O/N, <mark>send</mark>	incubation,	positives,	punch, incubate	load MS/MS to run	punch repeats,
out for	load repeats	call/email about	O/N	O/N	refrigerate until
Krabbe DNA	on MS/MS to	Krabbe DNA			Monday
	run O/N				

Six-day Workflow for LSD Testing (Continued)

	Monday (4)	Tuesday (4)	Wednesday (5)	Thursday (6)	Friday (5)	Saturday
	Print repeat	Process	Call out		Specimen	Process
	list, punch	incubation,	<mark>positives</mark> ,		receipt,	incubation,
	repeats,	load repeats	call/email about		<mark>punch,</mark>	load MS/MS
	incubate O/N,	on MS/MS to	Krabbe DNA		incubate O/N	to run until
	send out for	run O/N				Monday
	Krabbe DNA					
MS/MS Activity	O/N Run	O/N Run	O/N Run	O/N Run	O/N Run	Run until
Started that Day						Monday
Started that Day						
	Nothing	Monday	Tuesday	Wed	Thursday	Friday
Content of		specimens &	specimens, no	specimens &	specimens &	specimens &
Finished		Thurs, Fri	repeats	Mon repeats	Tues repeats	Wed repeats
MS/MS Runs		repeats				

Five LSD Pilot Study Summary n=10,108

Enzyme	Disorder	DBS Repeated TBC	% Repeat Rate	Presumptive Positive called	% Positive Rate	BL	Confirmation- Positive Callout	% Confirmed cases	Range Positive Callout (% daily median)	BL Repeat
IDUA	MPS-I	25	0.25	7	0.07	1	4 Normal; 3 Pending	0	18-28	1 Repeat Normal
GLA	Fabry	10	0.10	3	0.03	2	2 Normal; 1 pending	0	8.4-11	2 Repeat Normal
GAA	Pompe	38	0.38	11	0.11	6	4 Normal; 7 Pending	0	18.3-22.7	2 Repeat Normal; 1 Repeat Abnormal; 1 Expired; 2 Pending
ASM	Niemann Pick A/B	2	0.02	0	0.00	1		0		1 Repeat Normal
ABG	Gaucher	15	0.15	3	0.03	2	2 Normal Repeat; 1 Pending	0	12.5-16.3	2 Repeat Normal

IDPH Consent Form

Please indicate if you are willing to share information regarding the newborn screening test result or blood specimen from you or your child. This information will NOT include names.

If you are willing to share this information, please indicate your consent by initialing beside the information you agree to share below:

I consent to my child's/my newborn screening diagnostic testing results and treatment information, which is provided to the Illinois Department of Public Health, being shared with medical specialists and public health experts.

____ I consent to have my child's/my residual newborn screening blood spot shared by the Illinois Department of Public Health with one or more laboratories for test review, development and improvement purposes.

Current/Future Developments

- Change Cutoffs
 - Krabbe
 - Gaucher
 - Others ongoing
- Expand testing for five LSDs statewide June 1, 2015
- Change Buffer
- Evaluate current Perkin Elmer S/ISTD & LC to FIA
- Add back Krabbe

Changes to Cutoffs Based on Validation and Pilot (Percentage of Daily Median Activities)

• Krabbe

	– Validation:	1 st cutoff	≤20%
		2 nd cutoff	≤15%
	 Future testing: 	1 st cutoff	≤15%
	C	2 nd cutoff	≤12%
D	Pompe		
	– Valid. & Pilot:	1 st cutoff	≤30%
		Borderline	≤28%
		2 nd cutoff	≤23%
	 Future testing: 	1 st cutoff	≤26%
		Borderline	≤23%
		2 nd cutoff	≤18%

Comparison of IDPH to PerkinElmer Buffer for Multiplex Assay

IDPH Substrates and Internal Standards

Ammonium formate	0.1 M, pH 4.4
Sodium cholate	10 g/L
Acarbose	0.08 M
N-Acetyl-α-galactosamine	50 mM
IDUA Substrate (S), Internal Standard (IS) GLA S, IS GAA S, IS ASM S, IS (d7-C6 Ceramide) GALC S, IS (d7-C8 Ceramide) ABG S, IS (d7-C12 Ceramide)	500 μM, 3.5 μM 600 μM, 1.2 μM 200 μM, 2.0 μM 150 μM, 2.5 μM 450 μM, 2.5 μM 300 μM, 2.5 μM

PerkinElmer Buffer

Acarbose N-Acetylgalactosamine D-Saccharic acid-1,4-lactone monohydrate Sodium taurocholate Zinc chloride Succininc Acid, pH 4.7 8 μmol/L 50 mmol/L 40 μmol/L 28 mmol/L 0.6 mmol/L 85 mmol/L

Future Developments

- Evaluate current PerkinElmer S/ISTD and FIA
- Switch from LC to FIA parallel test
- Add back Krabbe
 - Establish contract with reference laboratory
 - Develop in-house test for psychosine, 30 kb deletion, sequencing

THANK YOU

George Dizikes, Ph.D. Illinois Department of Public Health 2121 W. Taylor Street Chicago, IL 60612 312-793-4745

george.dizikes@illinois.gov http://www.dph.illinois.gov