

Current Testing Platforms Used to Detect One/Few Gene Mutations in Routine Newborn Screening

APHL/CDC Newborn Screening Molecular Workshop Atlanta, GA May 8, 2012

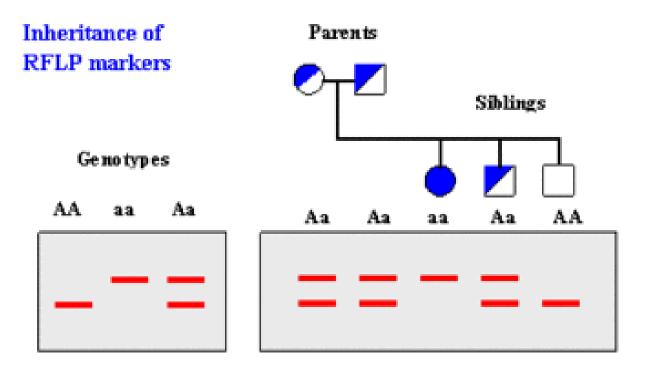
Mei Baker, M.D., FACMG

Assistant Professor, Department of Pediatrics

Science Director, NBS Laboratory at WSLH

University of Wisconsin School of Medicine and Public Health

Special Considerations

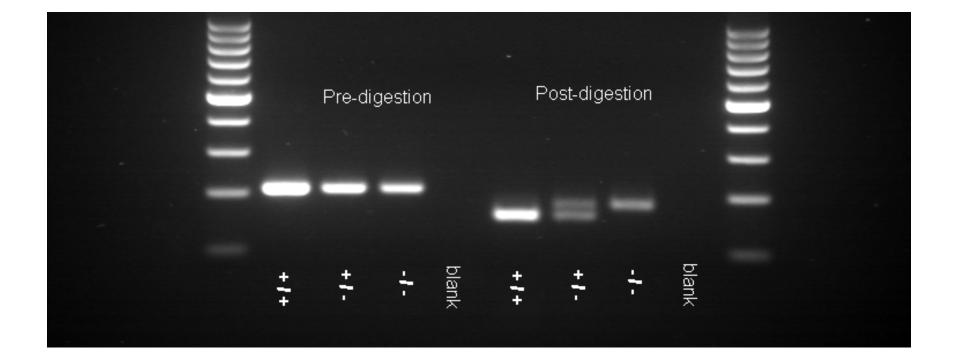

- Utilities
- Targeted mutation analysis
- Platforms
 - Available instrumentation
 - Workflow
 - Targeted gene sequences

Restriction Fragment Length Polymorphism (RFLP) Analysis

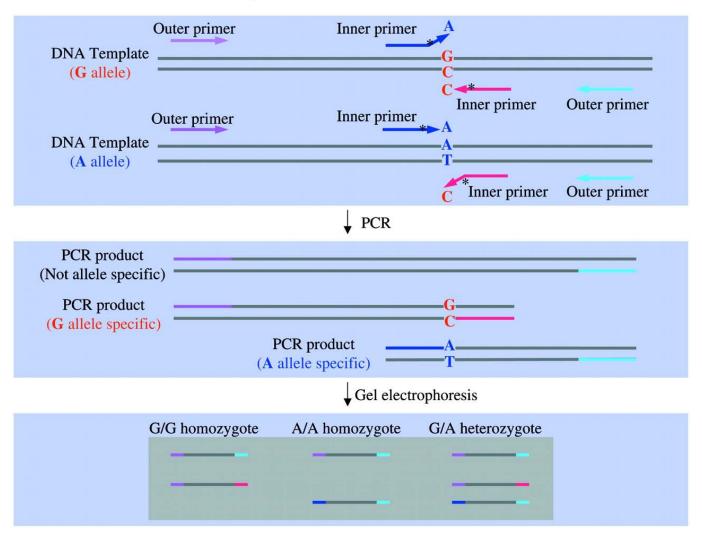
Enzyme	Recognition Site		
Rsa 1			
Mbo 1	G A T C C T A G		
EcoR1			

The red triangles indicate where the enzyme cuts the DNA.

Restriction Fragment Length Polymorphism (RFLP) Analysis


Medium-chain acyl-CoA dehydrogenase deficiency (MCADD)

(2) B-OXIDATION CYCL	E
acyl-CoA VLCAD LCAD MCAD SCAD enoyl-CoA TFP Crotonase	
♦ 3-OH-acyl-CoA	
TFP SCHAD NAD	
3-keto-acyl-CoA	
TFP SC-Thiolase	
acetyl-CoA	


A previously healthy individual presents with:

- lethargy, seizures, and coma triggered by a common illness
- Hepatomegaly and acute liver disease
- Cardiac presentation
- Sudden and unexplained death

ACADM c.985 A>G Mutation Detected by RFLP (Nco I Digestion)

Tetra-primer ARMS-PCR

Ye, S. et al. Nucl. Acids Res. 2001 29:e88; doi:10.1093/nar/29.17.e88

Nucleic Acids Research

Copyright restrictions may apply.

Primer Design

http://cedar.genetics.soton.ac.uk/public html/primer1.htm

Source sequence (up to 1,000 bases)

Position of SNP from start of sequence

Allele 1

Allele 2

Optimum (inner) product size

Maximum (inner) product size

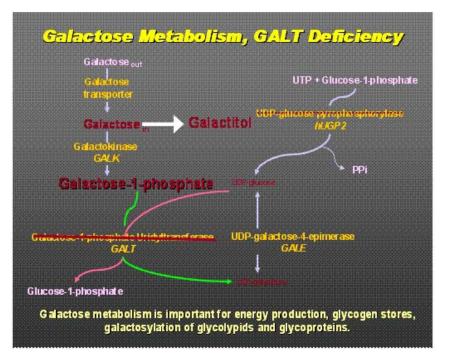
Minimum (inner) product size

Maximum relative size difference of two inner products

Minimum relative size difference of two inner products

Tetra-primer ARMS-PCR Reaction

- Reaction Mix: (25 µl)
 - 1X PCR buffer

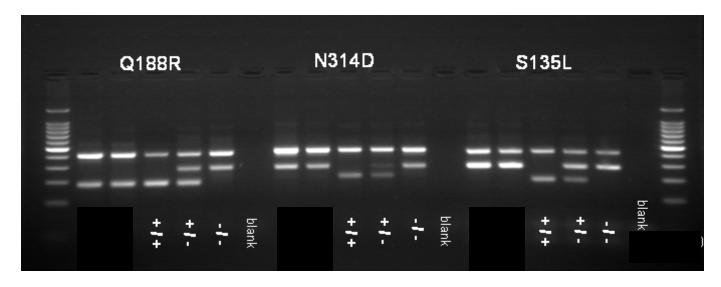

9

Forward inner primer 1.0 μM $1.0 \,\mu M$ Reverse inner primer 0.1 μM Forward outer primer 0.1 μM Reverse outer primer **DNTPs** 200 µM MgCl₂ 2.5 mM 2.5 U *Taq* DNA polymerase Genomic DNA 4 μl

- Thermal Cycler Condition
 - 1.95°C for 5 minutes
 - 2.95°C for 30 second
 - 3. 64ºC for 30 second
 - 4. 72ºC for 40 second
 - 5. repeat 2-4 for 32 cycles
 - 6. 72ºC for 2 minutes

- 1. The assays for different mutations are run simultaneously using the same thermal cycler conditions.
- 2. For N314D, inner primers concentration is 0.068 μ M, and outer primers concentration is 0.25 μ M (Rachel Lee)

Galactosemia

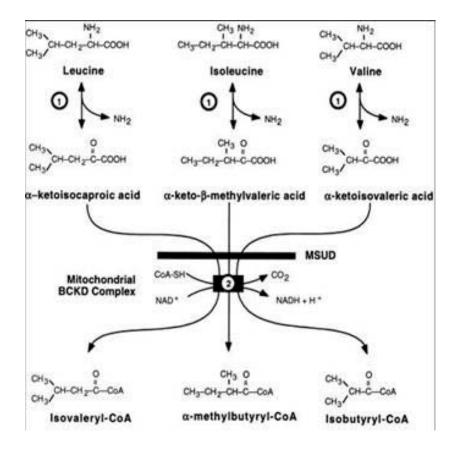

Common GALT galactosemia (G) mutations:

p.Gln188Arg, p.Ser135Leu, p.Lys285Asn, p.Leu195Pro, p.Tyr209Cys, p.Phe171Ser, 5kbdel, c.253-2A>G

Neonates with Classic Galactosemia

Finding	Percent
Hepatocellular damage	89%
Food intolerance	76%
Failure to thrive	29%
Lethargy	16%
Seizures	1%
Sepsis	10%

GALT mutations Detection Using Tetra-primer ARMS-PCR

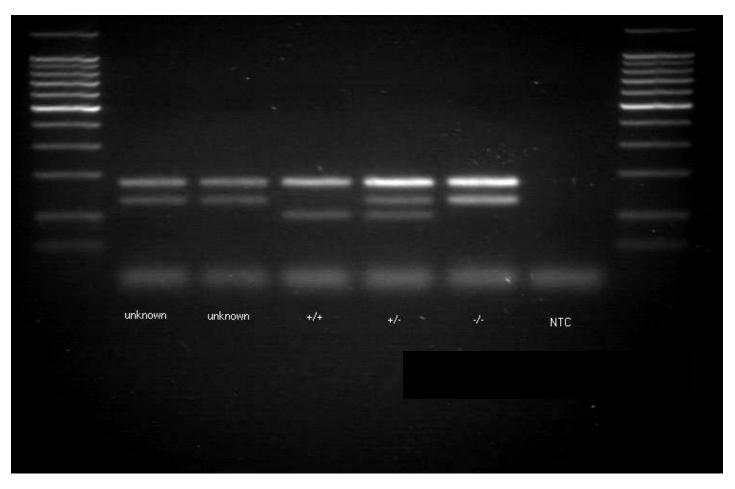

Greg Kopish

Notes:

- 1. Q188R—one of common galactosemia disease causing mutations.
- 2. N314D--Duarte (D_2) variant, and reducing enzyme activity by 25%
- 3. S135L is associated with a mild phenotype.
- 4. Newborns who are G/D heterozygotes may have a positive newborn screen

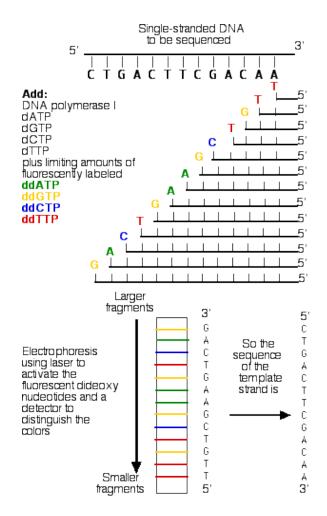
Maple Syrup Urine Disease (MSUD)

BAA Metabolism Pathway

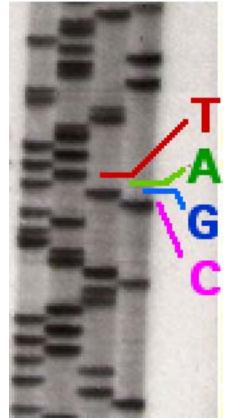

• Neonates with Classic MSUD

- maple syrup odor (12-24 HR)
- irritability, and poor feeding (2-3 days)
- lethargy, intermittent apnea, opisthotonus, "fencing" and "bicycling" (4-5 days)
- central respiratory failure (7-10 days)

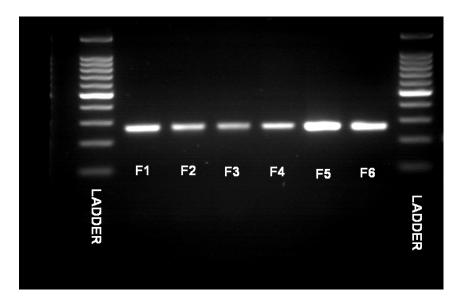
• MSUD in Old Order Mennonites

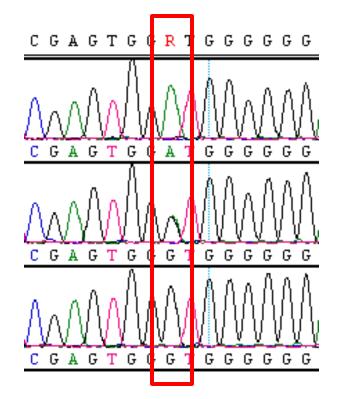

- Carrier frequency is as high as one in ten
- Disease incidence of approximately one in 380 live births
- Founder <u>mutation</u> (c.1312T>A) in BCKDHA

BCKDHA c. 1312T>A Mutation detection using Tetra-primer ARMS-PCR



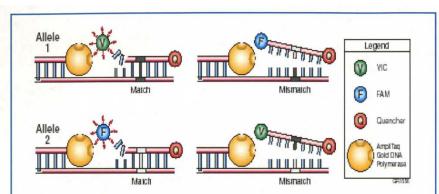
Sanger's Method of DNA Sequencing


ATGC

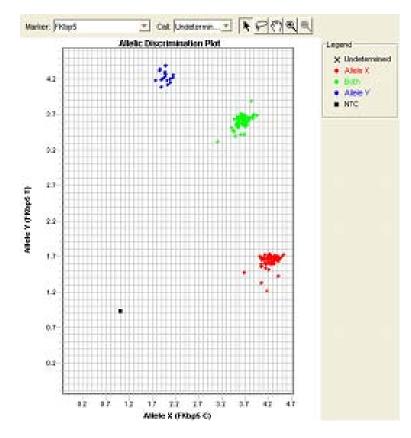


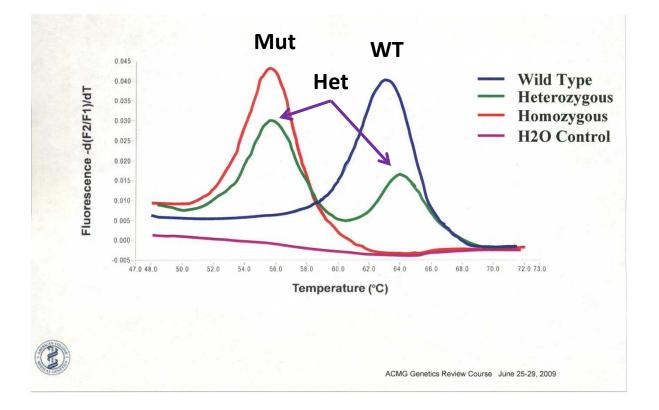
ACADSB c.1165A>G Mutation Detected by Sanger Sequencing

PCR products flank ACADSB c.1165A>G site


Sequencing Results

Greg Kopish & Timothy Davis


Allelic Discrimination Using TaqMan Probes


The table below summarizes the possible results of the example allelic discrimination assay shown above.

> Applied Biosystems

A substantial increase in	Indicates	
VIC fluorescence only	homozygosity for Allele 1.	
FAM fluorescence only	homozygosity for Allele 2.	
both fluorescent signals	heterozygosity.	

Fluorescence Resonance Energy Transfer (FRET) Real-time PCR Assay

Summary

Assay	Procedures	Instrument
RFLP	Conventional PCR Restriction enzyme digestion Agarose gel electrophoresis (Size-based discrimination)	Thermal cycler Gel electrophoresis unit
ARMS-PCR	Conventional PCR Agarose gel electrophoresis (Size-based discrimination)	Thermal cycler Gel electrophoresis unit
Targeted gene sequencing	Conventional PCR PCR products treatment Sequencing Reaction Capillary electrophoresis	Thermal cycler DNA analyzer
TaqMan real-time PCR	Real-time PCR	Real-time PCR system
FRET real-time PCR	Endpoint PCR	Real-time PCR system

Success is the sum of a lot of small things correctly done.

Chef Fermand Point