





### **Enzyme Replacement Therapy (ERT)**

Treatment: Replace alglucosidase alfa (GAA) deficiency

| FDA<br>Approval | Pompe Disease<br>Form<br>(Indication)     | Drug     | Wholesale<br>Acquisition Cost<br>per 50mg vial |
|-----------------|-------------------------------------------|----------|------------------------------------------------|
| 2006            | Infantile-onset<br>(ERT start ≤3.5 years) | Myozyme  | \$975                                          |
| 2010            | Late-onset (≥ 8 years)                    | Lumizyme | \$725                                          |

- Not curative
- Infusion typically every two weeks with central line
- Typical dose is 20 mg/kg infused over 2 hours
- Adverse Effects: Infusion Associated Reactions, Antibody Formation

| ٠. |      | -        |        |         |        |
|----|------|----------|--------|---------|--------|
| ц  | Duke | Clinical | Resear | rch ins | titute |





### **Factors that Affect Detection**

### **Carriers**

· May have below normal GAA enzyme activity level and be identified through screening

### **Pseudodeficiency**

- Low measured GAA enzyme activity level, but does not lead to Pompe disease
- High frequency in East Asian populations (3.9%)
- · Can be identified by genotyping

U Duke Clinical Research Institute



### **Factors that Affect Treatment Response**

### CRIM+ vs. CRIM-

- Cross-Reacting Immunologic material individuals make some endogenous enzyme, which may or may not be functional
- CRIM- can develop high titers of antibodies that neutralize ERT, leading to poor outcome
- Standard CRIM status detection: Western blot, however mutation analysis is usually helpful
- CRIM+: ~25% of CRIM+ individuals can also develop antibodies to ERT, usually not as significant as antibody development among those who are CRIM-







### **Diagnosis**

- · Establish low functional GAA enzyme levels
- Genotyping
  - Rule out pseudodeficiency
  - Identify carriers
  - Predict infantile-onset vs. late-onset
  - Predict CRIM status







### **Expected Epidemiology in the United States**

- Overall Incidence ~1/28,000
- · Infantile-onset Pompe disease ~28% of cases are infantile-onset Pompe disease

  - ~85% of infantile cases are classic Pompe disease
     ~75% of cases of classic infantile-onset Pompe disease are CRIM+
- · Late-onset Pompe disease
  - − ~72% of cases are late-onset
- Pseudodeficiency occurs in <1% of births







### **Clinical Course Before ERT Availability: Infantile-Onset Pompe Disease**

|                        | Symptom<br>Onset<br>Median Age | Diagnosis<br>Median Age | Mechan<br>Ventilat<br>Assistar<br>Median Ag | ion<br>nce | <b>Death</b><br>Median Age |                    | Surviv            |                  |
|------------------------|--------------------------------|-------------------------|---------------------------------------------|------------|----------------------------|--------------------|-------------------|------------------|
|                        | Mos<br>(range)                 | Mos<br>(range)          | Mos<br>(range)                              | %          | Mos<br>(range)             | 12 mos             | 18 mos            | 24 mos           |
| Infantile-<br>onset    | <b>2.0</b> (0- 12)             | <b>4.7</b> (<0-84.2)    | <b>5.9</b> (0.1–39.5)                       | 29         | <b>8.7</b> (0.3–73.4)      | <b>25.7</b> [16.9] | <b>14.3</b> [8.5] | <b>9.0</b> [4.9] |
| WITH cardiomyopathy    | 2.9                            | 6.0                     |                                             |            |                            |                    |                   |                  |
| WITHOUT cardiomyopathy | 4.4                            | 15.6                    |                                             |            |                            |                    |                   |                  |





# Clinical Course Before ERT Availability: Late-Onset Pompe Disease

|                | Symptom<br>Onset             | Diagnosis  | Death                | Estimated | Survival P | ost-Diagn | osis (%) |
|----------------|------------------------------|------------|----------------------|-----------|------------|-----------|----------|
|                | (med. consult)<br>Median Age | Median Age | Median Age           | +5 yrs    | +10 yrs    | +20 yrs   | +30 yrs  |
| Late-<br>onset | 28 years                     | 38 years   | +27 years<br>post-dx | 95        | 83         | 65        | 40       |

U Duke Clinical Research Institute



### Effectiveness of ERT - Infantile Onset

- Compared to historical controls, ERT at 52 weeks (first infusion by 6 months of age)
  - Reduced the risk of death by 95%
  - Reduced the risk of death or invasive ventilation by 87%
- Overall survival at 36 months: 72%
- Overall ventilator-free survival at 36 months: 49%
- · CRIM- status associated with worse outcomes
- · Lower survival if ERT begun after 6 months of age

U Duke Clinical Research Institute



# Pre-symptomatic Detection of Late-Onset Pompe Disease

- No trials of pre-symptomatic ERT for late-onset disease
- Treatment decisions based on presence of weakness or muscle damage (e.g., elevated CK). MRI can also show muscle damage.
- · Recommendations for follow-up not standardized
- Potential harms of early identification include treatment with ERT, central line placement, economic cost of lifelong treatment, and psychosocial harm.
- There is evidence from an RCT of ERT for symptomatic individuals (mean age in the 40s) that ERT can improve respiratory status and motor function.



### **Pre-symptomatic Detection of Late-Onset Pompe Disease**

- The effect of treatment begun after symptom development might be limited because muscle damage is irreversible. Treatment begun before symptom development might avoid muscle damage.
  - Biologic plausibility for pre-symptomatic treatment
    - · Muscle damage cannot be reversed by ERT
    - Autophagic inclusion bodies persist after ERT even after reduction of glycogen in muscle cells
- · Testing this hypothesis would require a prospective study that would take many years.

U Duke Clinical Research Institute



### Summary

- About 1/28,000 have Pompe disease
- · Most cases are late-onset
- There is good evidence that early identification of infantile-onset Pompe compared to clinical detection improves outcomes.
- There is no direct evidence that pre-symptomatic treatment leads to better outcome; however, there is biologic plausability.
- · Most cases of infantile-onset Pompe disease are CRIM+.
  - CRIM- is associated with worse outcomes
  - Immunomodulation appears to improve outcomes, and early immunomodulation may be more effective



### **Diagnostic issues in Pompe Disease APHL Webinar** February 19, 2014

Olaf A Bodamer MD, PhD, FACMG, FAAP **Division of Clinical and Translational Genetics** Dr John T. Macdonald Foundation, Department of Human Genetics University of Miami, Florida obodamer@med.miami.edu



### Case report Pompe Disease

- · Female, 18 years
- Presented with progressive proximal myopathy
- Elevation of CK (670 U/L)
- Muscle biopsy showed vacuolar myopathy
- Late-onset Pompe Disease confirmed by enzyme analysis in fibroblasts followed by molecular analysis of GAA gene



### XXIII

### Diagnostic avenues Pompe Disease

- · Clinical symptoms
- · General laboratory abnormalities
- · Histology/histochemistry in muscle
- Analysis of  $\alpha$ -glucosidase activity
- Molecular analysis of the GAA gene



### Histology/histochemistry in muscle

- · Vacuolar myopathy
- Vacuoles contain PAS(+), PASD(-), acid phosphatase
- Degree of pathologic change varies with disease severity, and with different muscles
- Analysis of acid maltase in muscle tissue feasible



Muscle biopsy may miss diagnosis!

|   | • | • |              |   |
|---|---|---|--------------|---|
| - |   |   | MALE MALE ST | ı |



# General laboratory abnormalities

- Elevation of CK (400-1000 U/L)
- Elevation of aldolase, AST and ALT (ratio=1)
- Elevations of AST and ALT may be misinterpreted as liver disease



# General laboratory abnormalities-ctd

| Disease                              | Genes Involved         | Age at Onset, y | Pattern<br>of Weakness | CK Level,<br>×ULN <sup>a</sup> | Respiratory<br>Involvement | Cardiac<br>Involvement <sup>b</sup> |
|--------------------------------------|------------------------|-----------------|------------------------|--------------------------------|----------------------------|-------------------------------------|
| LGMD1A                               | MYOT                   | 20-40           | Proximal/distal        | N to <5×                       | No                         | A, CM                               |
| LGMD1B                               | LMNA                   | 4-35            | Proximal/distal        | N to 5×                        | Yes                        | A, CM                               |
| LGMD1C                               | CAV3                   | 15-40           | Proximal/distal        | 5-25×                          | No                         | No                                  |
| LGMD1D                               | DNAJB6                 | 20-60           | Proximal               | N to 5×                        | No                         | No                                  |
| LGMD2A                               | CAPN3                  | 2-40            | Proximal               | 10-20×                         | No                         | No                                  |
| LGMD28                               | DYSF                   | 10-30           | Proximal/distal        | 10-50×                         | No                         | No                                  |
| LGMD2C-F                             | SGCG, SGCA, SGCB, SGCD | 3-20            | Proximal               | 5-25                           | Yes                        | CM (not LGMD2D                      |
| LGMD2I                               | FKRP                   | 3-40            | Proximal               | 10-50×                         | Yes                        | CM                                  |
| LGMD2L                               | ANO5                   | 20-50           | Proximal/distal        | 5-50×                          | No                         | No                                  |
| LGMD2M                               | FKTN                   | 0-15            | Proximal               | 10-25×                         | Yes                        | CM                                  |
| DMD                                  | DYS                    | 2-5             | Proximal               | 10-50×                         | Yes                        | CM                                  |
| BMD                                  | DYS                    | 5-30            | Proximal               | 5-50×                          | Rare                       | CM                                  |
| Childhood and adult<br>Pompe disease | GAA                    | 1-60            | Proximal and axial     | N to 5×                        | Yes                        | Rare                                |

brievlations-A, arrhythmia; BMD, Becker muscular cystrophy; CK, creatine

\*The vLUN indicates the serum CK level at diagnosis reported as multiple
nase; CM, cardiomyopathy; DMD, Duchenne muscular cystrophy; LGMD,
nb-girde muscular cystrophy; N, normal; LUN, upper limit of normal.

\*Arrhythmia and cardiomyopathy;

### Analysis of $\alpha$ -glucosidase activity

- Fluorometric assay
- singleplex, high throughput
- ideal for dried blood spots and leukocytes
- Tandem mass spectrometry
   multiplex capabilities, high throughput
   ideal for dried blood spots
   24-36 hour assay time

- Inhibition of maltase-glucoamylase by arcabose needed to avoid false negative results



### Cross Reacting Immunological Material

- CRIM negative infants with Pompe disease mount an immune response against recombinant enzyme
- · CRIM status can be determined in fibroblasts or peripheral blood mononuclear cells using Western Blot
- CRIM status may be predicted based on genotype in the majority of CRIM (-)

Bali DS et al. Am J Med Genet 2012 Wang Z et al. Mol Genet Metab 2014





# Molecular analysis of the GAA gene • GAA gene spans 28kb on 17q25.3; 20 exons • >250 pathogenic mutations (www.pompecenter.nl) · Common pathogenic mutations include: - c.-32-13T>G (Caucasian) - p.R854X (African-American) - p.D645E (Chinese) • Pseudodeficiency variant p.G576S (20% enzyme activity) Clinical suspicion Pompe Disease (spectrum of disease, infantile....adult onset) **CK, ALT, AST** (cardiac echo, X-Ray, lung function based on clinical indication) Analysis of alpha-glucosidase (dried blood spot, leukocytes) in specialized laboratory Confirmation of Pompe Disease (plus CRIM status) Low alpha glucosidase activity and identification of 2 pathogenic GAA mutations Evaluation of organ manifestations and identification of treatment goals Pompe Disease staging MRI / MRI Angiogramm (in selected patients) Physical/neurologic examen Quality of life Family history Chest Xray, Echo, ECG Hearing/cochlear fct (infants on ERT) Lung function Sleep studies (older children...) Blood tests: CBC, chemistry, CK, GOT, GPT, LDH rhGAA antibody titer, CRIM Serum, plasma, dry blood spots, urine Muscle function test (storage for future biomarker analysis) Neurodevelopmental tests



### Summary and conclusions

- Diagnosis of Pompe disease has to be timely to maximize the benefit of therapy
- Laboratory abnormalities include moderately elevated CK and transaminases in most patients
- Muscle biopsy is obsolete for the diagnosis of Pompe disease
- Diagnostic test of choice is analysis of  $\alpha$ -glucosidase activity in dried blood or leukocytes followed by molecular analysis of the *GAA* gene (cave pseudodeficiency!)
- Diagnostic testing should be done in CLIA/CAP certified laboratory with high sample load



### Contact information

Olaf Bodamer MD PhD FACMG FAAP
Division of Clinical and Translational Genetics
Dr John T. MacDonald Foundation
Department of Human Genetics
obodamer@med.miami.edu
Office: 305 243 6056

Office: 305 243 6056 Fax: 305 243 2704

BGDL:

biochemgenlab@med.miami.edu



|  | <br>         |  |
|--|--------------|--|
|  | <br><u> </u> |  |
|  |              |  |
|  |              |  |
|  |              |  |
|  |              |  |

# Pompe Disease: Treatment Neena Champaigne, MD Medical Biochemical Geneticist Director, Metabolic Treatment Program February 19, 2014







### Initial Clinical Trials with rhGAA

### 4 patients treated for 36 weeks with rhGAA from Rabbit Milk1

### Clinical Outcomes

- · Cardiac function improved
- Motor function improved
- Respiratory function variable
- Survival beyond 1 year all

### Muscle Biopsy

- α-glucosidase activity normalized
- Glycogen material decreased
- J Inherit Metab Dis. 2001 Apr;24(2):266-74. Genet Med. 2001 Mar-Apr;3(2):132-8.

### 3 patients treated for 1 year with rhGAA from CHO cells<sup>2</sup>

### **Clinical Outcomes**

- · Cardiac function improved
- Motor function variable
- Respiratory function variable
- Survival beyond 1 year all

### Muscle Biopsy

- α-glucosidase activity improved
- Glycogen material variable



### ERT for Infantile-Onset Pompe Disease (IOPD)

- Multiple clinical trials demonstrated:
  - Survival rate improved
  - Invasive ventilation-free survival rate improved
  - $\ {\sf Cardiac \, function-improved}$
  - $\ \mathsf{Motor} \, \mathsf{function} \, \mathsf{-improved}$
- Treatment response is variable and correlates
  - Age at onset of symptoms
  - Stage of disease at ERT initiation
  - CRIM status

|     | Greenwood<br>Genetic Center |
|-----|-----------------------------|
| oc. | 2009-66: 329-335            |

Pediatrics 2004; 113:e448-57, Neurology 2007;68:99-109, Genet Med. 2009;11:210-219, Pediatr Re

### **CRIM Status in Pompe Disease**

- Cross-reacting immunologic material (CRIM)
  - Negative status: 20% of infantile-onset form
    - No endogenous GAA enzyme produced
    - Develop high-sustained antibody titers (HSAT)
    - Reduced survival
    - Reduced invasive ventilator-free survival
    - Decreased cardiac response
    - Regression/loss of motor development

Mol Genet Metab. 2010;99:26-33



### Immune Toleration Induction (ITI)

- Prevent or eliminate immune response to rhGAA
- Immune modulation with:
  - Rituximab
  - Intravenous immune globulin (IVIG)
  - Methotrexate
  - Gene Therapy?

N Engl J Med. 2009;360(2):194-195. Mol Genet Metab. 2010;99:26-33. Genet Med. 2012; 14:135-142. Am J Med Genet Part C Semin Med Genet. 2012;160C:30-39.



### Impact of Early ERT for IOPD

- NBS in Taiwan: Oct. 2005 Dec. 2007
  - 206,088 newborns screened
  - 6 cases IOPD diagnosed and treated with ERT
  - After 14-32 months of treatment
    - Normal cardiac size
    - Normal respiratory status
    - Normal motor development

Pediatrics.2009;124:e1116-e1125.



### ERT for Late-Onset Pompe Disease (LOPD)

- · Respiratory function -stabilized or improved
- Muscle function stabilized or improved
- Quality of life improved
- Treatment response is variable and correlates with:
  - Age at onset of symptoms
  - Stage of disease at ERT initiation

J Neurol. 2010;257:91-97. N Engl J Med.2010;362:1396-1406 Muscle & Nerve. 2012; 45(3): 319-333



### **ERT for LOPD**

- Recommended for symptomatic LOPD
  - Decreased pulmonary function
  - Demonstrable muscle weakness
- Efficacy should be assessed after 1 year to determine if symptoms have been
  - Slowed
  - Reversed
  - Stabilized
  - Prevented

Muscle & Nerve. 2012; 45(3): 319-333.



### Impact of Early Diagnosis/ERT for LOPD

- NBS in Taiwan: 2005 -2009
  - 344,056 newborns screened
  - 13 cases LOPD diagnosed (no cardiomyopathy)
  - 4 cases started on ERT (at 1.5 month to 3 years) due to:
    - Low muscle tone
    - Developmental delays
    - Elevated creatine kinase
  - 9 untreated cases monitored every 3-6 months

J Pediatr. 2011; 158: 1023-7.



## FDA Approved ERT

- Myozyme\* 2006
  - Approved for Infantile Pompe
  - 20 mg/kg IV every 2 weeks
  - 50 mg vial = \$975\*
  - Annual Cost: \$50 400 K
- Lumizyme® 2010
  - Approved for ≥ 8 years old without cardiac hypertrophy
  - 20 mg/kg IV every 2 weeks
  - 50 mg vial = \$725\*
  - Annual Cost: \$300 600 K

\*Commercial cost per Genzyme – February 2014



### **ERT Considerations/Limitations**

- Infusion-related reactions
- · Antibody formation
- Unsatisfactory access to muscle cells
- New emerging neurological phenotype
- · Life-long treatment
- Cost



### Second Generation ERT

- BMN-701 (BioMarin)
- Neo-GAA (Genzyme)
- Alternative lysosomal targeting with IGF-2 linked to GAA
- Synthetic bis-M6-P linked to GAA
- Phase 1/2 clinical trials
- Phase 1 clinical trials

Mol Ther. 2009;17(6):954-963. J Biol Chem. 2013 Jan 18;288(3):1428-38. http://www.clinicaltrials.gov/



### Chaperones

- Stabilize/rescue misfolded or unstable proteins
- N-butyldeoxynojirimycin (NB-DNJ)
  - Improved GAA transport from ER to lysosomes
  - Increased GAA activity
- Phase 2 Clinical Trial Duvoglustat Hydrochloride (Amicus)
  - Administered 1 hour prior to ERT

Mol Ther. 2007;15:508–514. Mol Ther. 2009;17(6):964-971.



# Gene Therapy Adeno-Associated Virus (AAV)

- Trials in GAA-KO mice
  - Target: Skeletal muscle
    - · Limited systemic effects
  - Target: Liver
    - · Efficient production, secretion and uptake in multiple tissues
    - · Neutralization by anti-hGAA antibodies
  - Target: Diaphragm
    - Increased phrenic nerve activity and improved ventilatory function
- Phase I/II Clinical Trial- in progress

Proc Natl Acad Sci USA.1999;96:8861-8866. Mol Ther. 2002;6:601-608. Mol Ther. 2010;18:502-510. Hum Gene Ther. 2013 Jun;24(6):630-40.



### **Other Adjunct Therapies**

- · Nutrition and Exercise
  - Low-Carbohydrate, High Protein Diet
    - Minimize glycogen accumulation
    - Increase muscle protein synthesis
- Daily Aerobic Exercise
  - Increase ratio of type I to type II muscle fibers

Greenwood Genetic Center

Muscle Nerve 2007:35:70 =7



