

QUALITY ASSURANCE PLANNING

A Practical Approach to Quality Management Systems

John Shalkham
Director, Office of Quality Assurance
Wisconsin State Laboratory of Hygiene
Clinical Assistant Professor
University of Wisconsin-Madison

OBJECTIVES

- Describe the purpose of a Quality Assurance (QA) plan
- •List the components of an effective QA plan
- •Discuss the benefits of incorporating Quality System Essentials and other Quality Management System principles into a laboratory QA plan
- •Identify tools to use when developing an effective QA planning process

QUALITY TERMINOLOGY

- Quality control
- Quality assurance
- Quality improvement
- Quality indicators
- Quality management

QUALITY TERMINOLOGY

- Quality management systems
- Quality planning
- Quality system essentials

DEFINITIONS: QUALITY CONTROL

- A system designed to increase the probability that each result reported is valid and can be used with confidence by the physician
- Refers to activities that evaluate, monitor or regulate services
- QC procedures are designed to detect error
 - If acceptable, proceed with results
 - If unacceptable, evaluate test method and re-run test

EXAMPLES OF QUALITY CONTROL

- Running control samples
- Control charts
- Quality control statistics

DEFINITIONS: QUALITY ASSURANCE

- A system for monitoring and evaluating all the various aspects of a service
- A set of activities designed to ensure that processes are adequate to meet testing objectives
- Includes pre-analytical and postanalytical components of service

EXAMPLES OF QUALITY ASSURANCE

- Quality Assurance plan
- Customer satisfaction survey
- Sample adequacy and collection data
- Turn around time

QUALITY IMPROVEMENT (CQI)

- A formal approach to the analysis of performance and systematic efforts to improve it.
- Involves prospective and retrospective reviews
- Focuses on systems or processes, not people

EXAMPLES OF QUALITY IMPROVEMENT

- Plan, Do, Check, Act (PDCA) cycle
- Six Sigma
- Process Improvement
- Continuous Quality Improvement (CQI)

QUALITY INDICATORS

- Observations, statistics, or other data defined by the organization that typified the performance of given work
- Must be measurable and objective

EXAMPLES OF QUALITY INDICATORS

- Turn around time
- Workload
- productivity

QUALITY MANAGEMENT

- A way to continuously improve performance at every level of the organization
- All activities of the overall management function that determine quality policy objectives, implementing them by means such as quality assurance, and quality improvement within the system (NCCLS)

QUALITY MANAGEMENT

- Ensures that both the customer requirements and the organization's requirements are met
- Reviews interrelated processes within an organization

EXAMPLES OF QUALITY MANAGEMENT

- Cross cutting work teams
- Audits
- Quality monitoring
- Root cause analysis
- Proficiency testing
- Quality management review

QUALITY MANAGEMENT SYSTEMS (QMS)

- Management system to direct and control an organization with regard to quality
- All systems stress participation, communication, rewards and acknowledgment

EXAMPLES OF QUALITY MANAGEMENT SYSTEMS

- Total Quality Management (Deming)
- Six sigma (Motorola)

QUALITY SYSTEM ESSENTIALS (QSE'S)

- The management infrastructure necessary to support any health care organization
- Tools of a Quality Assurance Plan

QUALITY PLANNING

- The part of a quality management system focused on setting quality objectives and specifying operational processes
- Reflected in the document, the "Quality Plan"
 - Procedures, resources

PURPOSE OF A QA PLAN

- Process improvement
- Regulatory compliance
- To meet customer expectations
- Reduce costs by eliminating waste
- Improve laboratory performance by identifying sources of error

RELATIONSHIP OF STRATEGIC AND QA PLANS

- QA planning is a component of Strategic planning
- Quality plan has a shorter term focus, usually up to a year
- Strategic plan has a long range focus, usually 3-5 years

QA PLAN— A COOPERATIVE EFFORT

- Need support from administration, pathologists, technologists, and all staff
- Need clearly defined outcomes and responsibilities
- Need to build trust for a QA plan to be effective

BENEFITS OF A QA PLAN

- Improved test accuracy and performance
- Increased profitability
- Increased customer satisfaction
- Increased employee satisfaction

ATTRIBUTES OF A QA PLAN

- Clearly defined goals
- Realistic and feasible goals
- Cost effective planning process (keep it simple)
- A measurable positive effect on quality
- Flexibility

ATTRIBUTES OF A QA PLAN

- Assigns responsibility
- Contains statement of how you will measure performance
- To be used for process improvement. Not to be used or confused with competency assessment and performance evaluation

COMPONENTS OF A QA PLAN

- Indicators of performance
- Criteria for each indicator
- Standard for each indicator
- Remedial action to be taken for each indicator

POTENTIAL INDICATORS

- What is required by law?
- What have the traditional indicators used by the laboratory?
- What are the most important customer service indicators?
- What are the important fiscal indicators?
- How are process improvements monitored?

MOST IMPORTANT INDICATORS

- Impact on patient care
- Impact on customer satisfaction
- Compliance with legal or regulatory requirements
- Feasibility of monitoring

NUMBER OF INDICATORS

- Based on resources available
- What information can be used effectively
- What indicators are absolutely necessary

IT IS NOT FEASIBLE TO MONITOR
EVERYTHING

CRITERIA AND DATA COLLECTION

- Defines how data will be collected
- Defines who will be collecting the data
- Defines how calculations will be made
- Explains terms used in the indicator
- Explains who has access to this data

LABORATORY STANDARDS

- Precisely defines expected performance
- Standards are based on objective data whenever possible
- Can be reviewed and adjusted as additional data is collected

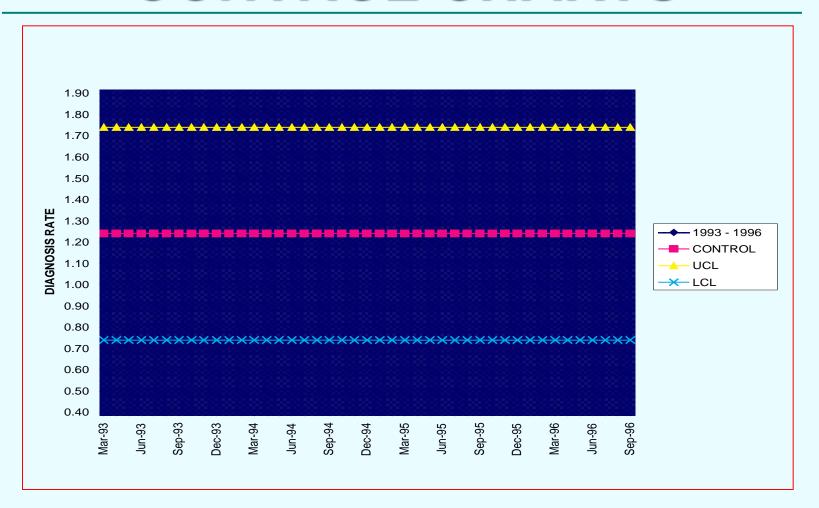
REMEDIAL ACTIONS

- Identify actions that will correct the problem
- Use continuous quality improvement tool (for example the Plan, do, check, act cycle) to evaluate actions
- Be prepared to take additional steps as needed

PDCA CYCLE

- <u>Planning</u> identifies indicators, criteria and standards
- <u>Doing</u> is the process of implementing a QA plan monitor
- Checking is comparing outcomes with expected standards
- Acting is taking steps to correct the problem

PDCA CYCLE


CONTROL CHARTS

- Consists of points that represent a statistic of measurement
- The mean of this statistic is calculated
- Standard error (deviation) is calculated
- Upper and lower control limits are defined that indicate output that is likely. Usually 2 or 3 standard deviations

CONTROL CHARTS

WHAT IS A QUALITY ASSURANCE PLANNING?

- Quality Assurance is a "system for evaluating performance, as in the delivery of services or the quality of products provided to consumers, customers, or patients"
- Quality Assurance plan is a component of a Quality system
- A tool to make the plan operational

QUALITY MANAGEMENT SYSTEM TOOLS

- Processes that provide a comprehensive approach to quality
 - Quality System essentials (Clinical and Laboratory Standards Institute)
 - ISO 15189 (The International Organization for Standardization)

QUALITY SYSTEM ESSENTIALS

- CLSI (NCCLS) document "Application of a Quality System Model for Laboratory Services (GP26-A3)
- Model uses 12 essential services based on the 20 quality system elements in ISO 9001
- Simplifies; uses language familiar to laboratories

12 QUALITY SYSTEM ESSENTIALS

- Documents and records
- Organization
- Personnel
- Equipment
- Purchasing and inventory
- Process control

- Information management
- Occurrence management
- Assessmentsinternal and external
- Process improvement
- Facilities and safety

DOCUMENTS AND RECORDS

- Identifies records and documents required for use in a quality management system.
- This information is described in the Laboratory Quality Manual
- Includes systems for controlling documents and records

EXAMPLES OF DOCUMENTS AND RECORDS

- Quality manual
- Procedure manuals
- Lab wide policy statements
- Records management
 - Identification
 - Storage and retrieval
 - Retention and disposal

ORGANIZATION

- Documents management involvement in the quality process
- Includes quality planning
- Tracking and follow up systems
- Quality officer/ quality assurance staff

EXAMPLES OF ORGANIZATION

- Organizational chart, including levels of authority
- Quality Plan
 - Reviewed and approved by technical supervisor
 - Coordinated with overall laboratory and/or institution plan
 - Visible participation of management

PERSONNEL

- A laboratory's most valuable and costly resource
- Includes policies and processes for obtaining and retaining highly qualified personnel

EXAMPLES OF PERSONNEL

- Qualifications (transcript, CV)
- Position (job) descriptions
- Position (job) qualifications
- Training records/continuing education
- Competency assessments
- Recruitment and retention records

EQUIPMENT

- Process for the selection and acquisition of equipment
- Process for assuring the instrument is working properly
- Process for assurance maintenance of the instrument

EXAMPLES OF EQUIPMENT

- Selection and acquisition process
- Calibration records
- Validation and verification records
- Maintenance records
- Equipment inventory

PURCHASING AND INVENTORY

- Provides for an efficient, costeffective operation
- Prevents interruption of services by identifying critical supplies and services

EXAMPLES OF PURCHASING AND INVENTORY

- Identification of critical supplies and services
- Vendor qualifications
- Purchase agreement review
- Inventory management
- Storage and handling
- Reference lab selection

PROCESS CONTROL

- Analysis and design of work processes
- Process documentation
- Process validation
- Incorporation of regulations, quality control, and outcome measures

EXAMPLES OF PROCESS CONTROL

- Flowcharts of processes
- Validation or verification studies
- Written procedures
- Process (statistical) control

INFORMATION MANAGEMENT

- Defines processes for receiving and handling patient information
 - Accessibility, security, and privacy for both paper and electronic records
- Defines the hardware and software needs
- Data tracking systems

EXAMPLES OF INFORMATION MANAGEMENT

- HIPAA records
- Computer security
- Computer system downtime
- Provision for downtime operation
- Defined authority levels

OCCURRENCE MANAGEMENT

- A process for the laboratory that allows anyone on staff to document and report problems or issues that may interfere with patient care services
- Focuses on analysis and trending of events, root cause analysis, and process improvement

EXAMPLES OF OCCURRENCE MANAGEMENT

- Practitioner or patient complaints
- Nonconforming QC events
- Nonconforming external assessments
- Reagent, supply, or instrument problems
- Safety issues
- PT failures

ASSESSMENTS- EXTERNAL AND INTERNAL

- External assessments are activities that evaluate the quality management system conducted outside the organization
- Internal assessments are activities that evaluate the quality management system conducted within the organization

EXAMPLES OF ASSESSMENTS-EXTERNAL AND INTERNAL

- External
 - Accreditation assessments
 - PT
- Internal
 - Monitoring of quality indicators
 - Internal audits

PROCESS REVIEW

- Collection of information from varied resources to identify opportunities for improvement
- Analysis of information and development of a process improvement plan
- Continuous quality Improvement

EXAMPLES OF PROCESS REVIEW

- Customer surveys results
- Feedback from employees
- Assessments, both internal and external
- Occurrence management
- Proficiency test results

CUSTOMER SERVICE

- Identification of internal and external customers
- Evaluation of customer needs
- Capture customer feedback

EXAMPLES OF CUSTOMER SERVICE

- Identification of both external and internal customers
- Customer survey
- Meeting with physicians to determine needs
- Meetings with internal laboratory staff to determine needs

FACILITIES AND SAFETY

- Need to maintain a safe work environment that provides safety for all staff
- Organization of space to assure optimal workflow
- Ergonomic design
- Remodeling/safety updates/ safety inspections

EXAMPLES OF FACILITIES AND SAFETY

- Space allocation
- Facility design
- Maintenance of facility
- Safety program
- Ergonomics
- Safety audits

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

- Provides requirements for competence and quality
- Have been an industry standard for many years.
- In 2000, ISO published ISO 15189guidelines for the Medical Laboratory

ISO STANDARDS

- ISO 9000 Quality management systems
- ISO 14000 Environmental quality
- ISO 13485 Quality management for medical devices
- ISO 17025 Competence of testing and calibration laboratories
- ISO 15189 Quality and competence in the medical laboratory

ISO 9000

- 8 principles
 - Customer focus
 - Leadership
 - Involvement of people
 - Process approach
 - System approach to management
 - Continual improvement
 - Factual approach to decision making
 - Mutually beneficial supplier relationships

ISO 17025

- Based on ISO 9000 requirements
- Used by laboratories to develop their quality, administrative, and technical systems
- Applies for laboratory testing outside medical laboratory
- Document was used to develop ISO 15189

ISO 15189-2007

- Mandatory in some countries (Europe)
- Voluntary in the U.S.
- Evolved from ISO 9000
- Scope extends beyond the internal activities of the laboratory
- Focuses on prevention of error

ISO 15189 Management Requirements

- Organization and management
- Quality management
- Document control
- Review of contracts
- Examination by reference laboratories
- External services and supplies
- Advisory services

ISO 15189 Management Requirements (continued)

- Resolution of complaints
- Identification and control of nonconformities
- Corrective action
- Preventive action
- Continual improvement
- Quality and technical records
- Internal audits
- Management review

ISO 15189 Management Requirements

- Focuses on what a laboratory should do
- Does not tell you how to do it
- Does not pose specific questions, as found in the CAP checklist

ISO 15189 Technical Requirements

- Personnel
- Accommodation and environmental requirements
- Laboratory equipment
- Pre-examination process

ISO 15189 Technical Requirements (continued)

- Examination procedures
- Assuring the quality of examination procedures
- Post-examination procedures
- Reporting of results

ISO 15189 Management Requirements

- When reading the ISO 15189 requirements
 - The "shall" statements are critical.
 These must be done
 - Note that there are areas where records are mandatory
 - Assigns management responsibilities
 - Defines role of quality manager

Summary

- Successful laboratory professionals will require a diverse skill set
- The decision of where testing will be performed is not pre-determined. It will go where there is the best chance of success
- Sound understanding of regulatory requirements as well as QA/QC/QM improves chances for success

References

- The Key to Quality; Clinical and Laboratory Standards Institute
- Application of a Quality Management System Model for Laboratory Services; Clinical and Laboratory Standards Institute. GP26-A3, Vol.24 No.3. 2004
- ISO 15189; Medical laboratories—particular requirements for quality and Competence; International Organization for Standardization. 2007.
- CAP 15189 Webinar Series 2 "Quality Management Systems in the Laboratory.
- Creating a Culture of Quality and Sustainability. College of American Pathologists 2009
- APHL ISO 15189 Teleconference Series. American Public Health Laboratory Association. 2009

