CryptoNet: A DNA sequence and RFLP-based molecular surveillance network for cryptosporidiosis

Dawn M. Roellig, MS, PhD

Microbiologist

08/29/2012

Presentation Objectives

- Introduce the life history Cryptosporidium spp.
 - Infections in humans
 - Life cycle
- Describe the epidemiology of cryptosporidiosis
 - Incidence trends
 - Risk factors
 - Diagnostic methods
- Provide a basic understanding of Cryptosporidium spp. genotyping methods

Presentation Objectives

- Present CryptoNet and the role it has in outbreak and case investigations
- Provide examples of genotyping revealing outbreak sources and risk factors undetermined by traditional epidemiologic methods
 - North Carolina 2009
 - Italy 2011

LIFE HISTORY OF CRYPTOSPORIDIUM SPP.

From Reducker et al., J Protozool., 32, 708-711, 1985

Cryptosporidium spp.

- Environmentally-resistant, chlorine-tolerant protozoan parasite
 - Can survive 2-6 months in a moist environment
- Primary site of infection is within the distal region of the SI and proximal colon
- Transmission routes include:
 - Contact with infected persons or animals
 - Contaminated water
 - Recreational or drinking
 - Contaminated food
- Incubation period: 1-12 days, with 7 days being typical

Cryptosporidium spp. life cycle

 Sporulated oocysts are shed in the feces of infected hosts

Approximately 30 different species, all indistinguishable from each other by microscopy

Cryptosporidiosis

- Clinical symptoms
 - Profuse, watery diarrhea
 - Cramping, abdominal pains, nausea
 - Fever, malaise, weight loss
- Self-limiting in healthy individuals
- Immunosuppressed individuals may have chronic, debilitating and severe disease
- Other high risk groups include children and pregnant women

Why is tracking *Cryptosporidium* spp. in the United States important?

EPIDEMIOLOGY OF CRYPTOSPORIDIOSIS

Incidence* of human cryptosporidiosis by year-United States, 1995-2010

*Per 100,000 population.

[†]N=85,514.

§First full year of national reporting.

Risk Factors

- Exposure to recreational water venues
- Child-care center attendance, contact with attendees
- Consumption of contaminated produce from farm/farm stand*
- Drinking untreated water from lakes, rivers, or streams
- Contact with cows, sheep, goats
- International travel

Clinical diagnostic methods

- Detection of Cryptosporidium organisms in stool samples
- Detection of Cryptosporidium antigen by immunodiagnostics (EIA, DFA)
- Detection by rapid cartridge assay kits
- Detection of Cryptosporidium DNA in stool samples

GENOTYPING OF *CRYPTOSPORIDIUM* **SPP.**

Two methods: PCR-RFLP and DNA sequencing

- PCR-RFLP of 18S rRNA gene
 - Used for speciation of human, animal, and environmental samples
 - 18S rRNA gene
 - High copy number gene target
 - Semi-conserved and hyper-variable regions
 - Amplification of ~830 bp fragment used in restriction enzyme reactions

18S PCR-RFLP

1-3: *C. hominis*

4&5: *C. parvum*

6: C. canis

7&8: C. meleagridis

9: *C. meleagridis* (heterogeneous)

10: *C. felis*

Upper panel: SspI digestion

Lower panel: VspI digestion

From Xiao et al., 2001

Two methods: PCR-RFLP and DNA sequencing

DNA sequencing of GP60

- Used for subtyping of C. hominis, C. parvum, and C. meleagridis
- GP60 (aka GP40/15)
 - Contains tandem repeats at the 5'end
 - Variations also present in non-repeat regions group C. hominis and C. parvum into subtype families

Species	Subtype family
C. hominis	Ia
	Ib
	Id
	Ie
	If
	Ig
C. parvum	IIa
	IIb
	IIc
	IId
	IIe
	IIf
	Ilg
	IIh
	IIi
	IIk
	III

Resources and costs

- Equipment
 - Thermal cycler
 - Water bath
 - Electrophoresis system
 - Microcentrifuge
 - ABI 3130xl Genetic Analyzer
- Estimated cost: ~\$9.50/sample

Advantages of using molecular genotyping

- Identify outbreaks
 - Differentiates clusters from sporadic cases
- Track sources of infection
 - Person-to-person vs animal-to-person
 - Association of environmental, food, water samples to cases
- Differentiation between outbreaks
 - Concurrent outbreaks in one geographical area
 - Secondary spread of strains
- Identification of geographical and temporal trends in outbreaks and cases

Crypto-Net USA

 ${\bf National\ Molecular\ Surveillance\ for\ Cryptosporidium}$

CRYPTONET

Objectives of CryptoNet

- Build our understanding Cryptosporidium transmission and the epidemiology of cryptosporidiosis
- Collaborate to develop, test, and implement standardized lab methods for Crypto investigations
- Build a network for tracking Cryptosporidium strains in humans, animals, and environmental samples
- Share this info in real time with partners to identify outbreaks and source infections

Data Management

- Epidemiologic data
 - Host, geographic origin, clinical manifestations, potential exposures
 - No Personal Identifiable Information (PII)
- Experiments
 - PCR-RFLP image of 18S rRNA gene
 - DNA sequence of GP60 gene target (fasta)
- Hope to link to existing data systems, such as NDDS, to reduce redundant data entry

BioNumerics Platform

Reference strains

Inputting Data

Differentiate outbreak clusters from sporadic cases

Inputting Epidemiologic Data

Inputting RFLP Data

Ability to Edit and Normalize

Completed Experiment Input

Inputting Sequencing (fasta) Data

Query

Data Analysis by Comparison

How useful is it?

OUTBREAK INVESTIGATIONS USING GENOTYPING AND CRYPTONET

Potential Public Health Impacts of a Cryptosporidium Genotype Tracking System

- Identify unknown epidemiologic links
- Identify unknown species that may cause human cryptosporidiosis
- Increase laboratory data sharing among national, state, and local public health laboratories
- Promote improved laboratory-based tracking of cryptosporidiosis in the United States

- Improved efficiency in detection and investigation of foodborne, waterborne, person-to-person, and zoonotic outbreaks of cryptosporidiosis
- Improve understanding of Cryptosporidium transmission in the United States

North Carolina Outbreak-2009

- Youth Summer camp
 - livestock, recreational water venues, well-supplied drinking water, meals from a central kitchen and garden that provided >50% of produce for meals
- 46 lab-confirmed and probable cases of cryptosporidiosis
- Analysis of data from retrospective cohort study was used to ID risk factors and implement control measures
 - Ham from a sandwich bar significantly associated with illness

NC outbreak 2009-Sampling

Stool samples

- Animals: calves, goats, kid, and piglet
- Human cases: 12 confirmed by PCR and genotyping

Environmental samples

- Water sources
 - All negative
- Composite soil samples from the garden
 - Cryptosporidium spp. detected but typing could not be performed

NC outbreak 2009-Moleculer Epidemiology

	Cryptosporidium parvum	
	#	Subtype
Human	8	llaA17G2R1 (8)
Calf	3	llaA17G2R1(2) llaA15G2R1
Goat kid	1	llaA17G2R1 (1)
Piglet	1	llaA17G2R1 (1)

Utility of genotyping in NC outbreak

- Traditional epidemiologic methods identified eating ham from a sandwich bar as the main risk factor
- Genotyping revealed identical genotypes between human cases and livestock on the property
- Source of infection was likely the livestock and contamination of lettuce picked with dirty hands was linked to disease
- Enabled accurate directives to prevent new infections
 - Previously a diluted chlorine spray was used for "washing" after handling animals
 - New prevention efforts included running water, soap, and appropriate hand-washing techniques

Zoonotic case in Italy-2011

- October outbreak of cryptosporidiosis identified in lambs of mixed livestock/sheep farm in Italy
 - 50% of lambs affected, mortality rate of 80%
- November, 18 mo old child of farm owner presented acute enteritis
 - Free of common bacterial species
 - Cryptosporidium sp. identified by microscopy

Findings-Italy 2011

- Child attended day care
- No direct contact with animals on farm
- Molecular Epidemiology
 - DNA sequencing from lab samples and human sample revealed presence of C. parvum
 - GP60 sequencing
 - Genotype IIaA20G2R1 present in sheep and human sample
- Presence of rare genotype in both sheep and human case samples suggest exposure on the farm
 - Indirect contact with oocysts on father's clothing

CryptoNet Proof of Utility

Differentiation and/or connection of outbreaks

 Two distinct outbreaks of cryptosporidiosis in neighboring counties of OK in the same month (2007)

Source tracking

- Linkage between cases and suspected swimming pool in SC outbreak
- Identification of a common zoonotic exposure between TN cases and a rare C. parvum subtype (IIaA15G2R1)

Improved epidemiologic understanding

- Finding a predominant C. hominis subtype IaA28R4
- Common occurrence of zoonotic species in sporadic cases in ME, TN, VT, and Wi

CryptoNet timeline

- Currently completed goals
 - User scripts
 - Over 350 reference sequences included in the database
 - Over 1000 sporadic and outbreak cases in the database
 - QA and QC of lab methodologies
- **2012**
 - Revise user scripts
 - Complete admin and server scripts

- 2013 launch
 - Training and certification of 3 state partners
- 2014 roll-out
 - Train and certify 5 additional partners
 - Revise any scripts based on trials with 2013 partners
- 2015 final roll-out
 - Train and certify all interested partners

Acknowledgements

- Molecular epi laboratoryCDC/DFWED/PDB
- Water epi team
 - Michele Hlavsa
 - Jonathan Yoder
 - Michael Beach
 - EISO
- CryptoNet, DFWED/PDB
 - Michael Beach
 - Lihua Xiao
 - Vince Hill

- CaliciNet
 - Duping Zheng
 - Jan Vinjie
- PulseNet
 - Brenda Brown
- State and local health departments

We need partners!!

For more information please contact Dawn Roellig at

1600 Clifton Road NE, Atlanta, GA 30333

Telephone: 404-718-4134

E-mail: iyd4@cdc.gov Web: http://www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

