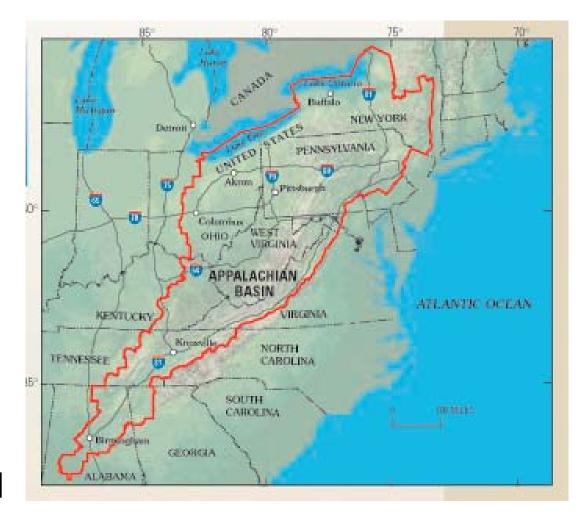


Bureau of Laboratories

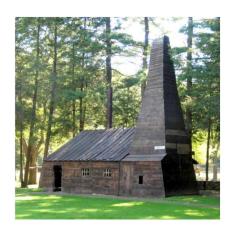
Advancing Operations at the Pennsylvania Environmental Bureau of Laboratories in Response to the Marcellus Shale Energy Era

Dr. Pamela J. Higgins

June 2, 2013 APHL National Meeting



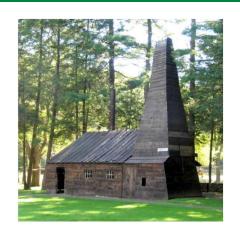
Appalachian Basin


One of the biggest regions of fossil fuel resources in world.

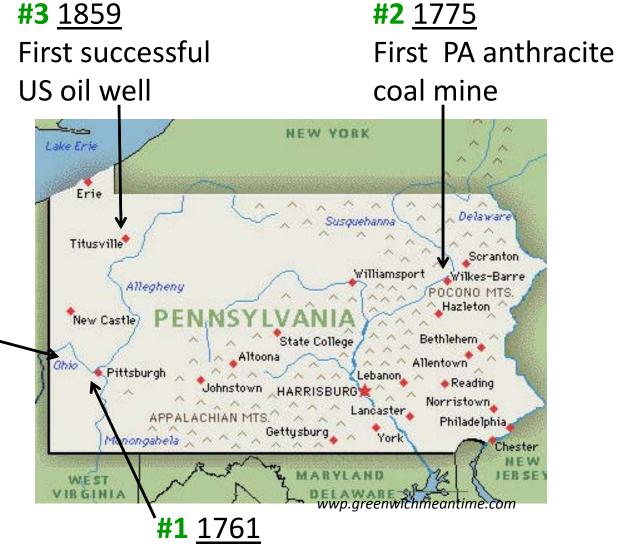
Critical formation during the Devonian period.

Crosses 10 states
-most of PA included

PA Energy Milestones

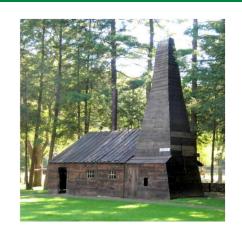


#3 1859 #2 1775
First successful First PA anthracite
US oil well coal mine



First PA bituminous coal mine

PA Energy Milestones



#4 1957
First US nuclear reactor reached criticality

First PA bituminous coal mine

PA Energy Milestones

#4 1957
First US nuclear reactor reached criticality

#5 2004

First PA Marcellus shale gas well drilled


#3 1859 #2 1775
First successful First PA anthracite
US oil well coal mine

First PA bituminous coal mine

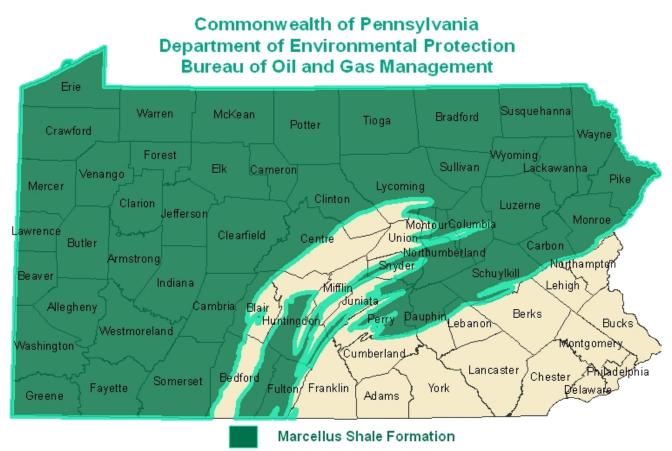
2011 Traditional Energy Profile

PA ranks 5th overall in total energy production but only 33rd in energy consumption per capita

PA Marcellus Shale Boom

Shale gas compared to coal:

Easier to extract


Lower operating costs

Lower greenhouse emissions

2007-2012

Approx. 5700 wells drilled throughout the formation

PSU animation

Potential impacts from hydraulic fracturing

Air pollution

-construction vehicles and drilling equipment (dust, fumes, PM)

-uncontrolled release of methane, VOC's

Water pollution

Surface

on-site spill/leak

- -fracturing fluids
- -wastewater

<u>Groundwater</u>

- on-site storage leaks
- pipe casing blowouts
- waste disposal

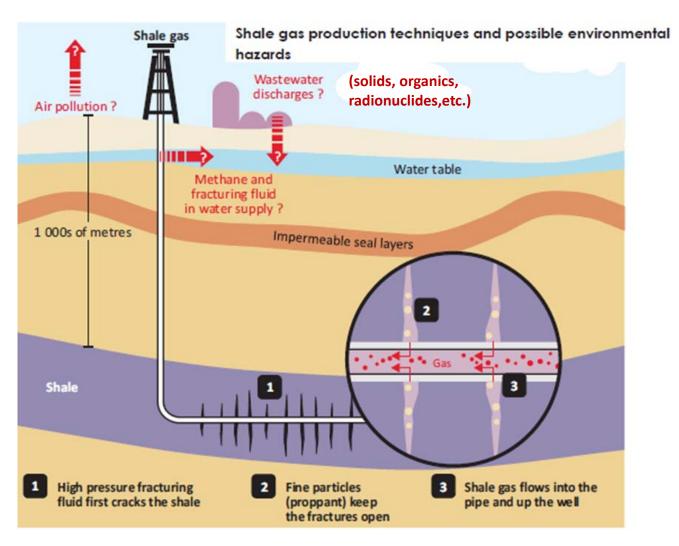


Figure 1.3 from Golden Rules for a Golden Age of Gas, IEA, May 2012

Typical Fracking Well Site

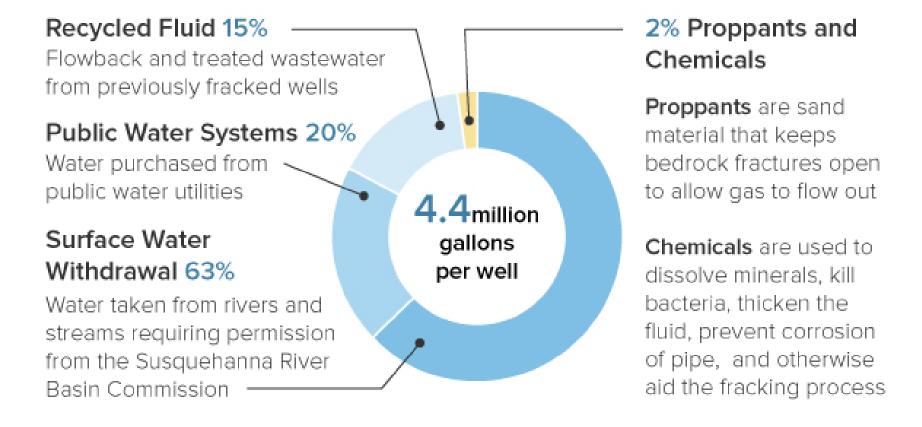
Hydraulic fracturing operation on East Resources well, eastern Tioga County.

Photo Courtesy of Robert Hansen, 2010. http://extension.psu.edu/water/marcellus-shale/hydrofracturing

Identifying and Mitigating Impacts*

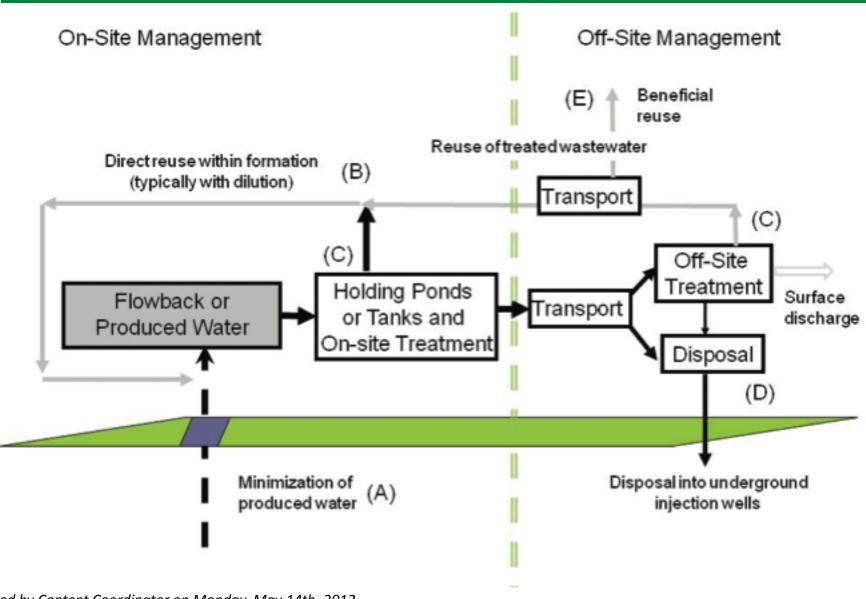
	Air quality monitoring	Ground/well water	Surface water	Waste water/sludge
Pre- construction	X	X	X	NA
Drilling and Operation	X	X	X	X (storage, disposal)
Post- operation	NA	X	X	X (disposal)

^{*} Most likely candidates for potential environmental effects due to shale gas industry.


PA Marcellus Shale Solid Waste 2012

Waste product	Total amount reported	Landfill	Recycle on-site
Drill cuttings	1.2 million tons	97 %	3 %
Flowback sand	50,000 tons	51 %	49 %

SAC	# tests	Total time (min)	Title (representative analytes)
971	15	92	Marcellus Shale-Soil Samples/Drill Cuttings (leach / acid digestion / % moisture and solids metals: Pb, Hg, Cr, Cd, Ba, Ag, As, Sr / Br-)


Water Input During Fracturing Process

What goes underground?

http://stateimpact.npr.org/pennsylvania/2013/03/12/how-much-water-it-takes-to-frack-a-well/#more-16503

Water Output During Production Process

Posted by Content Coordinator on Monday, May 14th, 2012 NATIONAL RESOURCES DEFENSE COUNCIL

PA Marcellus Shale Fluid Waste 2012

Waste product	Total amount reported	Landfill	Recycle on-site	Reuse off-site	Injection Disposal Well
Drilling fluid	2.0 million barrels	6 %	54 %	38 %	2 %
Flowback fluid	9.7 million barrels	N/A	15 %	84 %	N/A
Produced fluid	17 million barrels	N/A	13 %	67 %	20 %

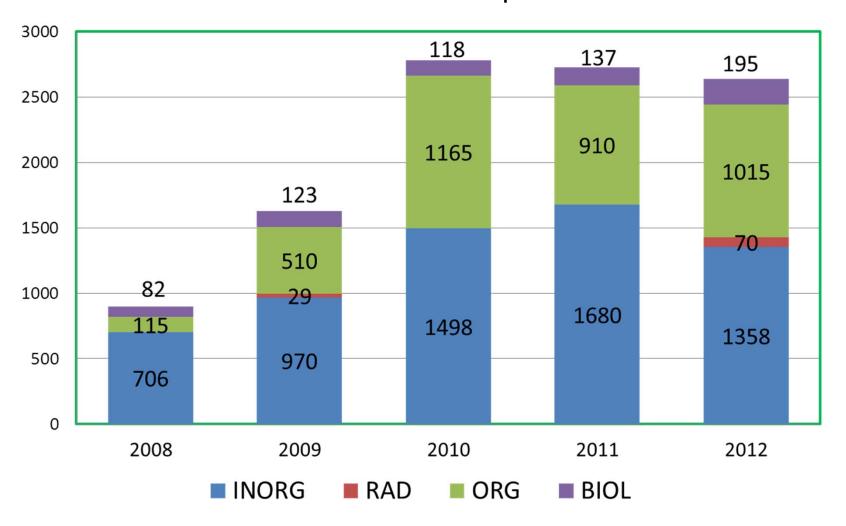
Marcellus Shale Produced Water Major Constituents

Constituent	Concentration range (mg / L) 5 - 14 days post fracturing
Total Dissolved Solids	38,500 – 261,000
Chloride	26,400 – 181,000
Sodium	10,700 - 95,500
Hardness (as CaCO ₃)	5,100 - 95,000
Barium	21.4 - 13,600
Strontium	345 – 3,580
Bromide	185 – 1,600
TENORMs	Non-detect -2,460 pCi / L

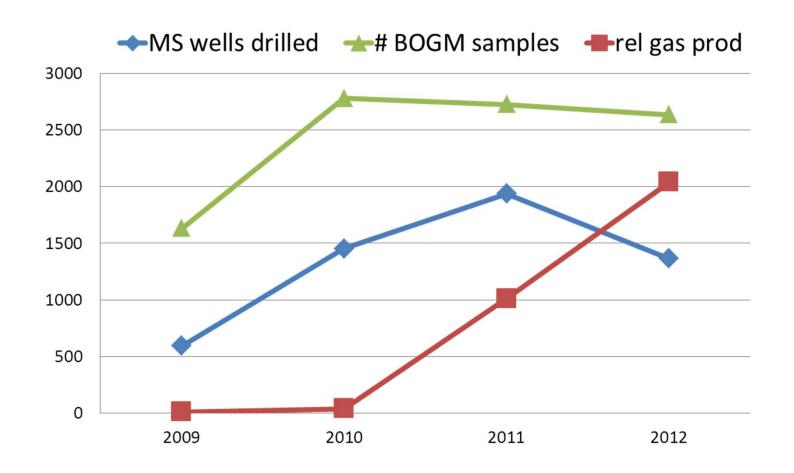
mostly brine, other salts

-high level of conductance

Adapted from T. Hayes (2009: "Sampling and Analysis of Water Streams Associated with Marcellus Shale Gas" and Rowen et.al. 2011: "Radium Content of Oil-and Gas-Fields Produced Waters in Northern Appalachian Basin")


Marcellus Shale Water Standard Analysis Codes

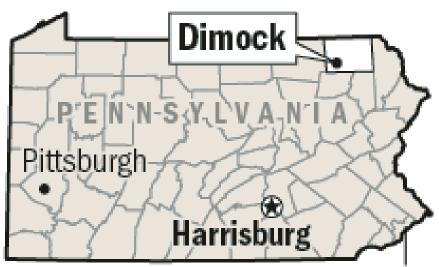
SAC	matrix*	Total # analytes	Total time (min)	Title (representative analytes)	
46	SW	27	118	Marcellus Shale (pH/SPC/alk/BOD/TSS/TDS/nutrients/ metals/Br-/OSpress)	
942	DW	14	44	BOGM update (pH/SPC/Alk/Hardness/TDS/Ca,Mg,Na,K,Fe,Mn,Ba,Sr/Cl-	
944	ww	45	258	Marcellus Inorganic Survey (pH/BOD/COD/oil&grease/nutrients/color/cyanide/sulf F-/24 metals /phenols/TDS/Hg)	
946	DW	23	86	BOGM Drinking Water Analysis (942 + Br-/sulfate/As/Zn/Al/Li/Se/Residue/Turbidity)	


^{*}SW = surface water, DW = drinking water, WW = wastewater

Marcellus Shale Activity Increased Sample Analyses

Samples submitted to the BOL by PA Bureau of Oil & Gas Management **200 % increase** in total samples since 2008

BOGM Sample Submission and Shale Well Drilling



Why did BOGM sample submission to BOL remain steady when well drilling dropped 30 % in 2012?

2012 BOL Dimock Sample Analyses

Received a total of **568 samples** during a **two month** timeframe

- 12 analytes required a5 day turn around time
 - coliform bacteria
 - four glycol species
 - methane
 - metals (Al, As, Li, Mn, Na, & Fe)
- remaining 250 analytes to be completed within 15 days (including gamma, gross alpha/beta radiation)

http://old.postgazette.com/images5/ Philadelphia 20101222dimock pa 235.png

2012 BOL Dimock Sample Workload Impact

Completion of all samples required:

1032 analytical hours 190 working ~300 incidental hours days needed

43 actual working days during 9 weeks of project

4.5 full time staff required

33 total full time analytical staff at BOL

Roughly 15 % increase in staff workload

All 2012 BOGM Samples Analytical Hours

BOL Section	Total samples	Total analytical tests	Total analytical hours
BIOLOGICAL (E. coli, total coliforms)	195	308	58
RADIOLOGICAL (gamma, gross alpha/beta)	70	210	47
ORGANIC (methane, semi/volatiles)	1015	32,900	811
INORGANIC (ions, pH, solids, metals)	1358	29,900	2017

2012 Total Analytical Time = 2933 hr

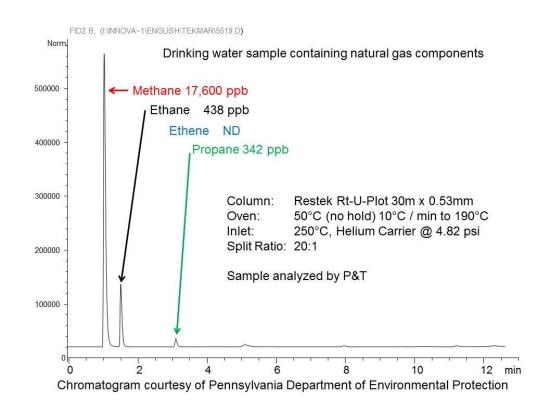
Advancing Marcellus Shale Monitoring

Addition of indicator compounds to current methods

Flowback fluid:	Impoundment fluids:
diethylene glycol	glutaraldehyde*
triethylene glycol	
2-butoxyethanol	

^{*} May also be present in flowback fluids

Advancing Marcellus Shale Monitoring


Developing methane detection methods

Purge and trap analysis of methane concentration in water

(collaboration w/ Teledyne Tekmar)

 purge and trap apparatus more common and involves less sample manipulation than headspace equilibrium techniques

Potential to add methods for isotopic analysis?

-useful for methane migration investigations

Advancing Marcellus Shale Monitoring

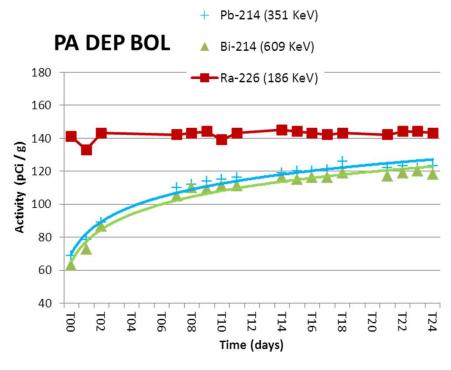
Adapting radiological detection methods

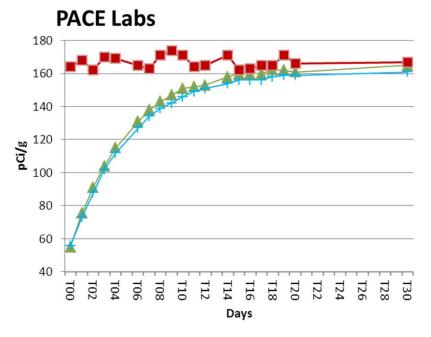
Georgia Tech Method for Ra-226/228 in Drinking Water

- co-precipitation method
- decreased preparation and in-growth time

Gamma Spectroscopy of TENORM (modified USEPA 901.1)

Direct activity measurement Th-230, Ra-226

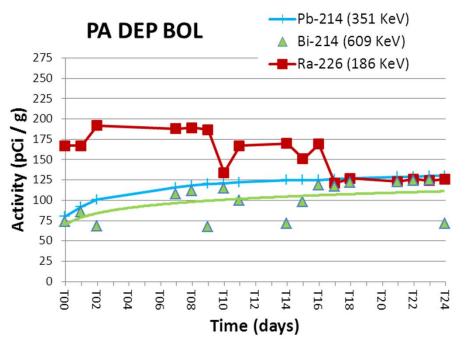

Inferred activity measurement Th-232, Ra-228, U-238

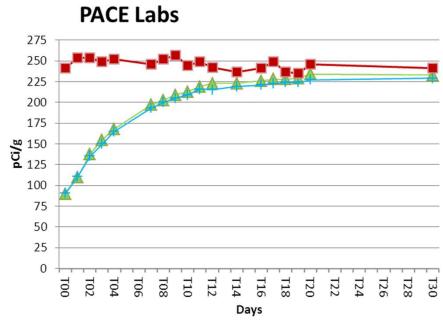

TENORM Split Sample Study

Sludge #1

	Ac -228 (911 KeV)	U -235 (185 KeV)
PA BOL	14.8 pCi / g	8.64 pCi / g
PACE Labs	21 pCi/g	0.10 pCi / g

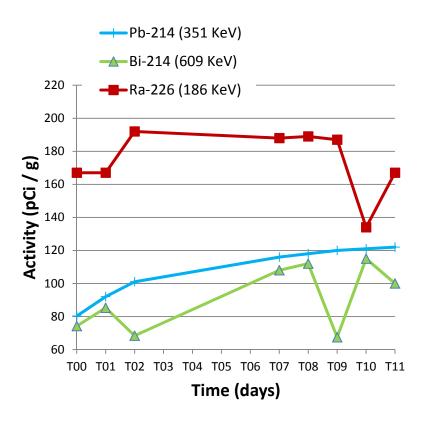
500 g in 0.5 L Marenelli (4π) 1000 min count time Measure most abundant line MDL = 1 pCi/g

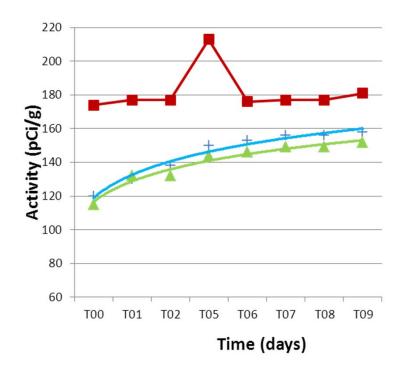



225 g in 8 oz cartridge (2π) 180 min count time Measure all energy lines MDL = 5 - 9 pCi/g

TENORM Split Sample Study

Brine Sludge #2


	Ac -228 (911 KeV)	U -235 (185 KeV)
PA BOL	118 pCi / g	9.38 pCi / g
PACE Labs	188 pCi / g	-1.0 pCi / g



PA BOL TENORM Re-Analysis

Brine Sludge #2

Dried sample not ground

- -less homogenous
- -more variation in counts
- -lower activity levels detected

Dried sample ground

- -more homogenous
- -less variation in counts
- -higher activity levels detected

PA TENORM Survey: Projected BOL Impact

	Gamma Spec	Gross Alpha/ Beta	Ra 226 / Ra 228	Alpha Spec	XRF / ICPMS
Soil/sludge sediment Smear	333	450	34	30	33
Water	497	497	50	50	0
Sample Total	830	947	84	80	33
Analytical time (hr)	471	406	562	380	8

1820 Analytical hours, one year time frame (~ 40 fold increase for Radiation Section from 2012)

Mitigating Media Misunderstanding

Lawmaker challenges Pa. DEP's reporting of gas well water safety

Pittsburgh Post-Gazette Nov 02,2012

Pennsylvania Report Left Out Data on Poisons in Water Near Gas Site

NY Times Nov 02, 2012

Alleged Pennsylvania DEP **Cover-Up** of Possible Fracking Contamination an **Abomination**Food and Water Watch Nov 02, 2012

Pennsylvania Caught **Cheating** on Water Test that Showed Fracking Poisons

AllGov Nov 06,2012

DEP Chief Krancer defends agency from critics of water testing practices
Trib Total media Nov 12, 2012

Environmental groups urge Corbett to revamp Pennsylvania DEP's process for water testing
Pittsburgh Post Gazette Nov 14, 2012

DEP shelves more stringent water test
Times online Jan 22, 2013

Pennsylvania DEP **Ignores Stringent Testing**for Water Contamination from Fracking
Natural Resources Defense Council Feb 1, 2013

Summary of BOL Operations Advancement

1) Update testing strategies as shale gas research advances

Adjust SAC's to monitor specific types of impacts

Address new contaminants of concern as they emerge

2) Prepare for increased workload due to survey projects or emergency sampling related to shale gas activity

3) Improve communication of laboratory practices/reports

Summary of BOL Operations Advancement

1) Update testing strategies as shale gas research advances

Adjust SAC's to monitor specific types of impacts

Address new contaminants of concern as they emerge

2) Prepare for increased workload due to survey projects or emergency sampling related to shale gas activity

Develop methods that improve sample turnaround time

Cross-train employees in various analytical methods

3) Improve communication of laboratory practices/reports

Summary of BOL Operations Advancement

1) Update testing strategies as shale gas research advances

Adjust SAC's to monitor specific types of impacts

Address new contaminants of concern as they emerge

2) Prepare for increased workload due to survey projects or emergency sampling related to shale gas activity

Develop methods that improve sample turnaround time

Cross-train employees in various analytical methods

3) Improve communication of laboratory practices/reports

Provide clear explanation of methodologies

Serve as a resource for understanding analytical reports

Questions? Contact us:

PA DEP Bureau of Laboratories (717)-346-7200

Martina Q. Mcgarvey, D.M. Director

mmacgarvey@pa.gov

Pamela J. Higgins, Ph.D.

Special Assistant for Laboratory Operations

pahiggins@pa.gov