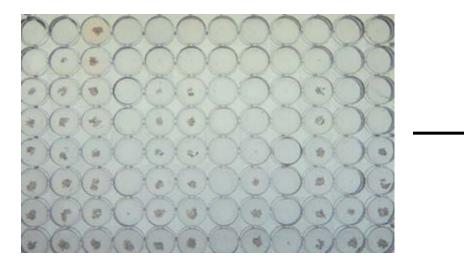
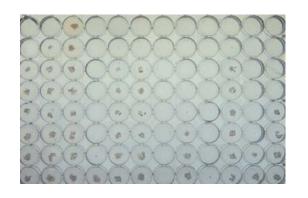
Clinical application of quantitative susceptibility testing


(if and when to use MICs)

Scott K. Heysell MD, MPH Infectious Diseases and International Health

No disclosures

MIC plate



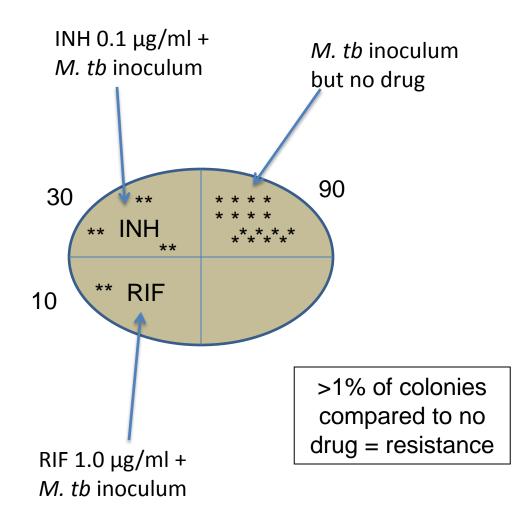
Patient with MDR-TB, Dhaka Bangladesh

With permission

How can quantitative susceptibility impact care at the bedside?

Outline

Introduction to quantitative susceptibility testing


•The limited role of minimum inhibitory concentration (MIC) testing for fully drug susceptible TB

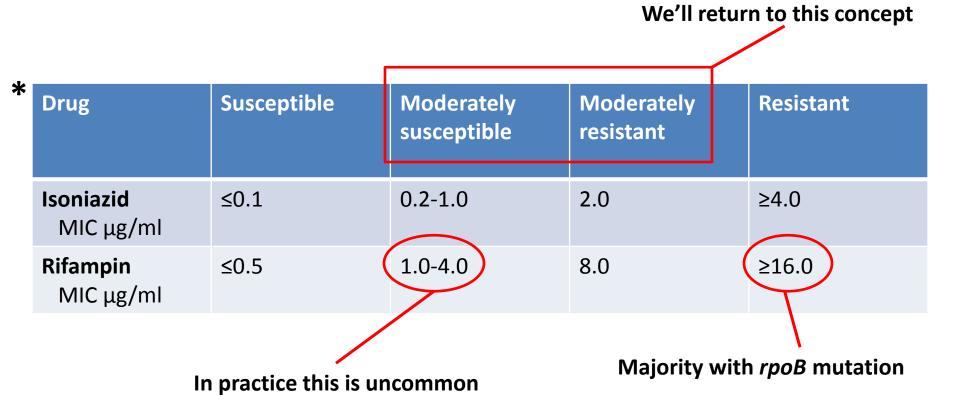
 The importance of MIC for drug-resistant TB or patients slow-to-respond given new data on individual pharmacokinetic variability

•Advantages/ disadvantages for TB/MDR-TB endemic areas

•Moving from resistance breakpoints: do we need an "intermediate" range?

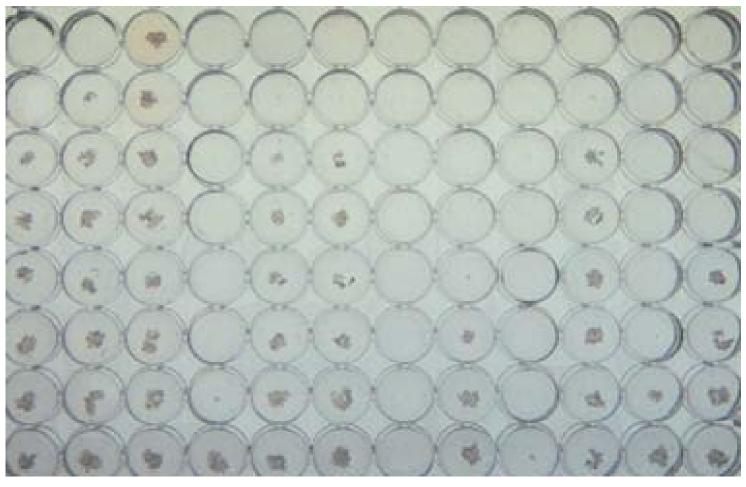
Principles of the 1% proportion method

Single critical concentration with qualitative yes/no resistance (<u>different than most other infectious</u> <u>diseases</u>)


But *M. tb* is different→ susceptibility testing on only subpopulation of organism in rapid growth phase, regimens used are 4+ different drugs

Crit concn can vary by media

But some isolates may teeter on Sus/Res, even using same media, same day of prep


Media prep at multiple concn for different drugs necessary for true MIC may be tedious, lack reproducibility

Minimum inhibitory concentrationshistorically used in specialized settings on solid agar

*Adapted from Iseman (LWW 2000) and Heifets, Am Rev Respir Dis 1988.

Now commercial microplate platform available

OFL MXF RIF AMI STR RFB PAS ETH CYC INH KAN EMB

Lyophilized drug in prefilled wells, shelf-life 2 years at room temperature

Sensititre MYCOTB, TREK

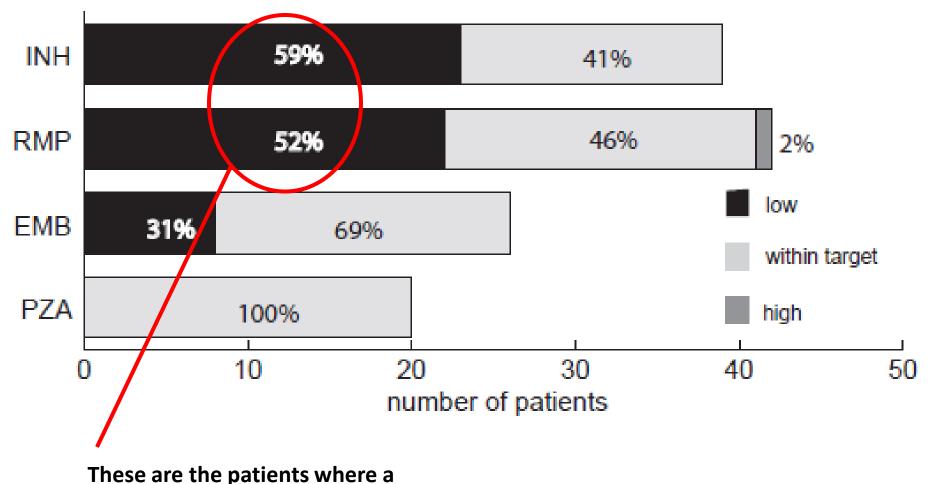
 122 <i>M. tb</i> isolates APM on 7H10 	Agent	APM critical concn(s) tested (µg/ml)	MycoTB plate range (µg/ml)	MycoTB plate concn(s) nearest to the APM critical concn(s) ^{<i>a</i>} (µg/ml)
 <u>94%-100%</u> categorical agreement using Plate concn nearest to APM crit concn 	First-line agents Ethambutol Isoniazid Rifampin	<u>5.0, 10.0</u> 0.2, 1.0 1.0	0.5–32 0.03–4 0.12–16	<u>4.0, 8.0</u> 0.25, 1.0 1.0
 Very few resistant isolates by APM: Eg. Moxi 2 (1.6%), Amik 8 (6.5%) 	Second-line agents Amikacin Cycloserine Ethionamide Kanamycin Moxifloxacin	5.0 25.0 5.0 5.0 2.0	0.12–16 2.0–256 0.3–40 0.6–40 0.06–8.0	4.0 32.0 5.0 5.0 2.0
	Ofloxacin <i>p</i> -Aminosalicylic acid Rifabutin Streptomycin	2.0 2.0 0.5 2.0, 10.0	0.25-32 0.5-64 0.12-16 0.25-32	2.0 2.0 0.5 2.0, 8.0

TABLE 1 Comparison of the APM critical concentrations and MycoTB plate ranges

Hall et al, J Clin Micro 2012

But the real advantage is *not* in another yes/no qualitative resistance test...

I want to know if an isolate is:

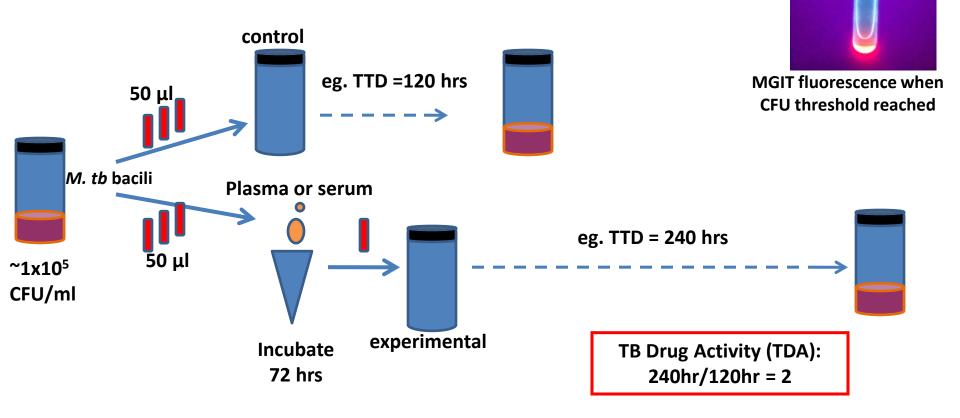

1. borderline susceptible

and I can maximize pharmacokinetics, particularly in a slow responder

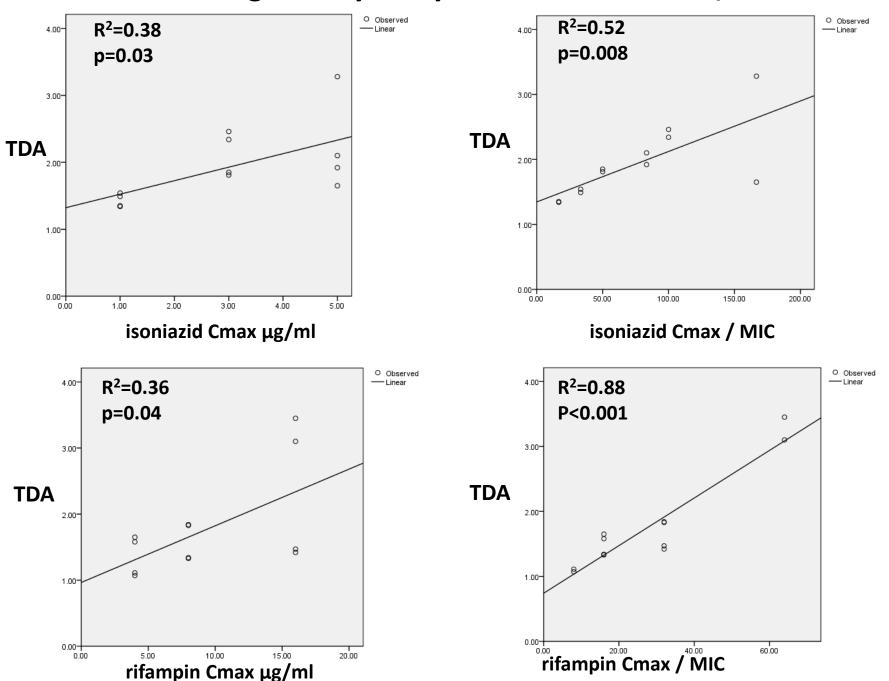
or...

 borderline resistant
 if the drug options are limited (complex MDR/XDR-TB)

Majority of slow responders in Virginia had low C_{2hr} levels of isoniazid (INH) and rifampin (RMP)



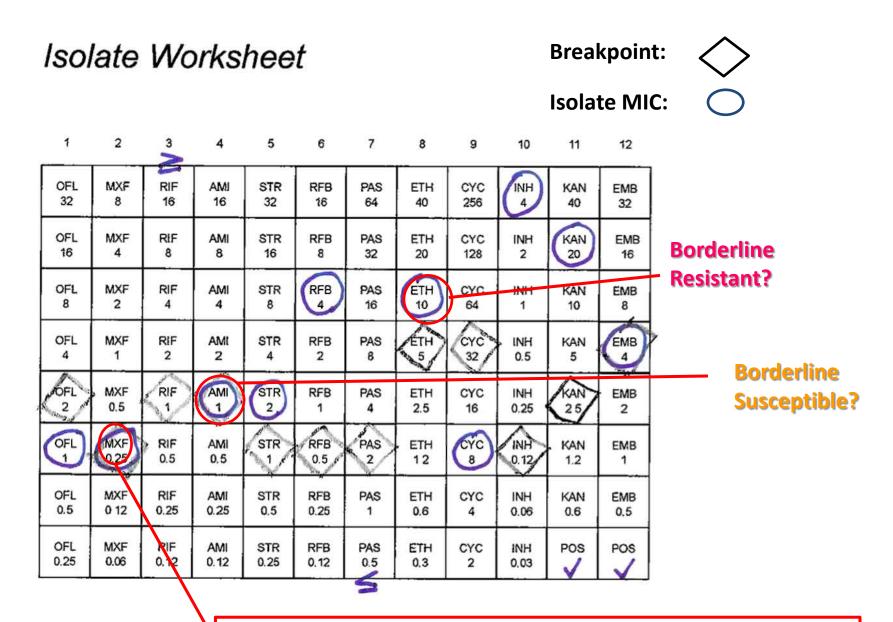
borderline susceptible MIC would matter most


Heysell et al, Emerg Infect Dis 2010

Plasma TB Drug Activity (TDA) assay:

In BACTEC MGIT tubes quantifiable killing measured as time-todetection (TTD), accurate and reproducible as colony counting

The TB drug activity assay is a metric for Cmax/ MIC


Poor plasma TB drug activity (Cmax/MIC) led to worse outcomes in Tanzania

	Mean drug C_2		
Drug	$TDA \le 2.0$ $(n = 9)$	TDA > 2.0 $(n = 7)$	P value
Isoniazid Rifampin Ethambutol Pyrazinamide	$\begin{array}{r} 1.31 \pm 1.2 \\ 0.77 \pm 1.3 \\ 0.83 \pm 0.37 \\ 20.3 \pm 7.3 \end{array}$	2.56 ± 1.2 4.65 ± 3.2 1.68 ± 0.93 28.0 ± 10.7	0.05 0.005 0.03 0.11

TABLE 2. TB drug activity (TDA) values and C_{2 h} drug levels at 14 days of TB treatment for Tanzanian patients^a

^{*a*} The plasma samples used for $C_{2 h}$ drug level and TDA measurements were from same blood draw. Comparisons of $C_{2 h}$ levels for isoniazid and rifampin were performed by *t* test.

Among subjects with the lowest TDA (≤1.5), only 2 (40%) were cured at 6 months compared to 10 (91%) with the higher TDA values (*p=0.06*)

Patient on moxifloxacin... is this even the correct breakpoint?

Significant regional variation of MIC, and target concentration/MIC

TABLE 4 PTA expectation values, ofloxacin pharmacokinetic study in patients with MDR-TB, Cape Town and Durban, South Africa

		-		
target	Ofloxacin daily dose (mg)	Overall PTA expectation	Cape Town PTA expectation	Durban PTA expectation
	fAUC/MIC ≥ 100)		
	800	0.45	0.33	0.65
Typical	1,000	0.57	0.46	0.76
dose	1,200	0.66	0.57	0.83
	1,400	0.73	0.64	0.89
	1,600	0.77	0.70	0.91
	$fAUC/MIC \ge 40$			
	800	0.83	0.77	0.94
	1,000	0.87	0.83	0.95
	1,200	0.90	0.87	0.96
	1,400	0.92	0.89	0.97
	1,600	0.93	0.91	0.97

*With MIC of 2.0 µg/ml (WHO critical concentration), no patient achieved target ≥100

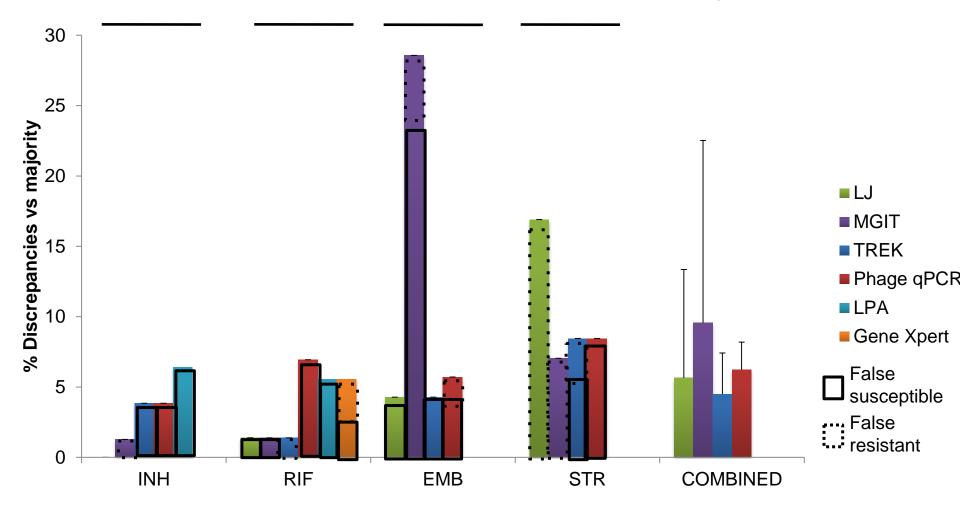
PTA: probability of target attainment

Chigutsa et al, Antimicrob Agents Chemother 2012

In a TB endemic setting, Tanzania, MDR-TB patients (N=25) had a wide range of drug concentration/ MIC

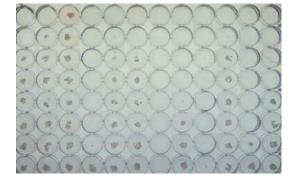
Drug (expected C _{2hr} range)	C _{2hr} μg/ml Mean ±SD	N below expected C _{2hr} range (% total N)	MIC μg/ml Median (IQR)	C _{2hr} /MIC Mean ±SD
Levofloxacin (8-12 µg/ml)	8.0 ±2.8	13 (52)	0.75 (0.25-1.0)	15.8 ±14.1
Kanamycin (25-35 μg/ml)	26.0 ±10.2	10 (40)	1.2 (0.6-2.5)	22.9 ±18.7
Ethionamide (1-5 µg/ml)	3.6 ±1.8	1 (4)	2.5 (1.2-5.0)	1.8 ±1.5
Cycloserine (20-35 µg/ml)	33.9 ±12.2	3 (13) ^a	8.0 (8.0-16.0)	4.3 ±3.0
Pyrazinamide (20-60 μg/ml)	43.1 ±9.7	0	N/A	N/A

Drugs concentration dependent in activity (like rifampin and isoniazid)


But drug concentrations (by HPLC) not available in most MDR-TB endemic settings, so...

Distribution of probable changes based on MIC, for MDR-TB patients (N= 13)

Modification	Frequency (%N)	
Ethionamide change to para-aminosalicylic acid	7 (54)	
Ofloxacin or levofloxacin <i>change</i> to high-dose levofloxacin	6 (46) gyrA wildtype	
Kanamycin <i>change</i> to amikacin	3 (23)	
Amikacin or kanamycin empiric change to capreomycin	3 (23)	
Amikacin <i>change</i> to kanamycin	1 (8)	
MIC can inform/alter the standardized MDR-TB regimen in Tanzania, even within a limited formulary		


Mpagama et al, submitted

Even the best qualitative methods will be discrepant: 86 *M tb* isolates (80% MDR) from Bangladesh

The MIC plate (TREK), using breakpoints, was the least discrepant when compared to other genotypic and phenotypic methods

Banu et al, in prep

Conclusions

 Commercial microplate MIC is available (and advantageous for many settings inexperienced in second-line DST) but use is limited for fully drug-susceptible TB– unless patient is slow-to-respond and drug concentrations can be measured and/or dose increased

 Given significant individual pharmacokinetic variability, including for MDR-TB drugs (fluroquinolones, aminoglycosides, ethionamide), MIC best applied with drug concentration measurement

 In the absence of drug concentration measurement (HPLC), MIC may still inform and alter MDR-TB management within a WHO formulary

 Quantitative susceptibility invites "borderline" or "intermediate" ranges but must be studied prospectively on a consistent platform (and informed by drug concentration/MIC targets)

Thank You

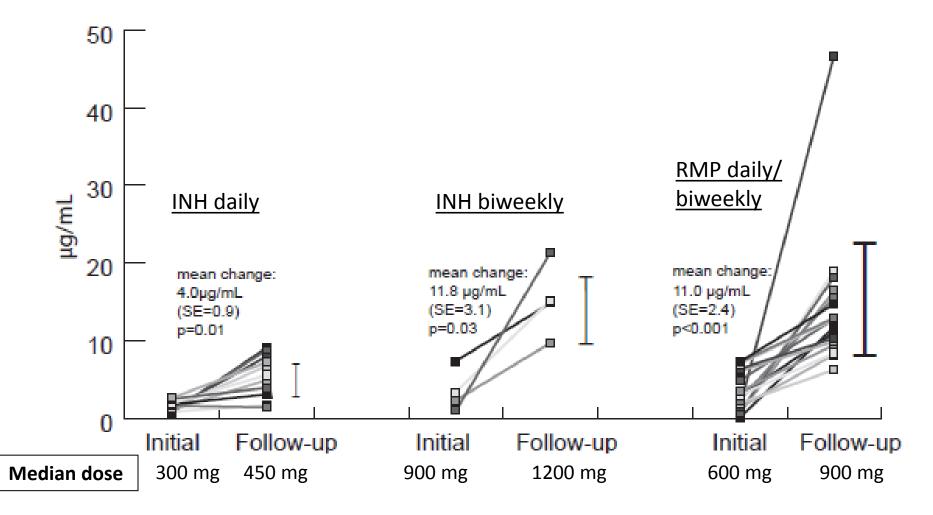
Virginia Department of Health/ TB Control and Prevention

Jane Moore <u>University of Virginia</u> Suzanne Stroup, Dorothy Bunyan, Suporn Pholwat, Tania Thomas, Eric Houpt <u>KCRI and Kibong'toto National TB Hospital, Tanzania</u>

Jean Gratz, Stellah Mpagama, Norah Ndusilo, Gibson Kibiki

ICDDR'B, Bangladesh

Sayera Banu


Support:

NIH K23AI097197 Burroughs Wellcome Fund/ASTMH NIH R01AI093358 (Houpt) Virginia Department of Health Virginia TB Foundation

skh8r@virginia.edu

Drug levels correct easily after first dose adjustment

T spans C_{2hr} expected range

Heysell et al, Emerg Infect Dis 2010

The epidemiologic cut-offs (95%) could be wildly different and miss the subtlety of drug concentration/ MIC

Pasipanodya J et al. Antimicrob Agents Chemother, 2012