Application of Whole Genome Sequencing (WGS) to Diagnosis of Drug Resistance in Tuberculosis

Global Consortium for Drug-resistant TB Diagnostics (GCDD)

Faramarz Valafar

faramarz@sciences.sdsu.edu http://informatics.sdsu.edu/

Biomedical Informatics Research Center (BMIRC) Office: GMCS 625 San Diego State University

Molecular Diagnostics for Drug Resistant TB (DRTB)

Rapid Molecular Tests:

- Hain
- GeneXpert
- Pyrosequencing

Features:

- Inexpensive
- Fast
- Highly localized
 - Usually evaluate the presence of point mutations

1. Phenotypic prediction based on discovered single nucleotide polymorphisms (SNPs)

Fluoroquinolone resistant isolates				
Mutation	Isolates	Sensitivity		
94 A→G	121	41.44%		
94 G→A	41	14.04%		
90 C→T	84	28.77%		
91T→C	6	2.05%		
88 G→T	4	1.37%		
74 G→C& 75 C→G	1	0.34%		
105 T \rightarrow G & 112 G \rightarrow C	2	0.68%		
No* gyrA mutation	33	11.30%		
* No mutation in QRDR except for Codon 95				

1. Prevalence of a SNP

Table 3: Prevalence of gvrA mutation among GCDD

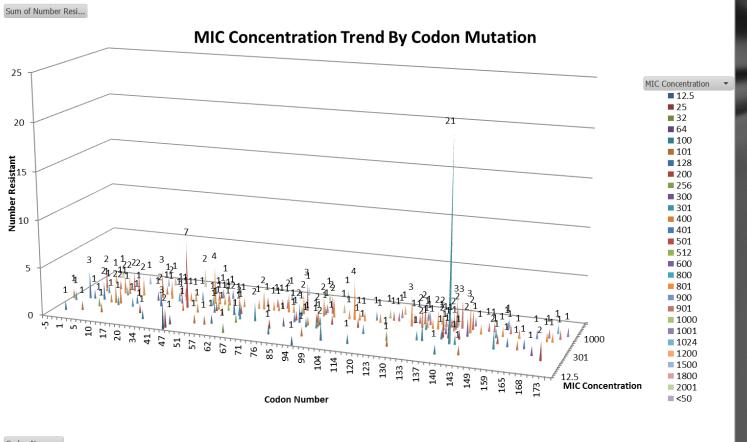
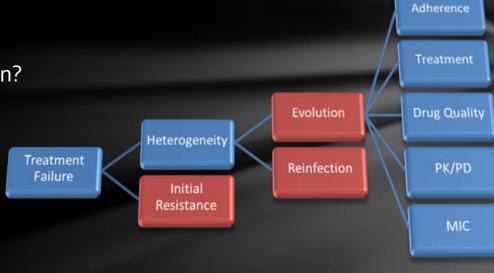

2. Regional Differences in Prevalence

Table 4: Preval	ence of r	rs A1401G	mutation	
among GCDD "injectable" resistant isolates				
	AMK ^R	CAP ^R	KAN ^R	
India	85%	89%	81%	
Moldova	65%	63%	26%	
Philippines	100%	100%	81%	
South Africa	91%	92%	88%	

Table 5: Preva	lence of	eis promo [.]	ter C-12T	
mutation among GCDD "injectable" resistant				
isolates				
	AMK ^R	CAP ^R	KAN ^R	
India	о%	0%	0%	
Moldova	10%	25%	54%	
Philippines	о%	0%	0%	
South Africa	о%	о%	0%	

1. Phenotypic prediction based on discovered single nucleotide polymorphisms (SNPs)

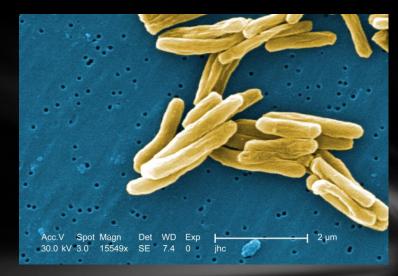

8/20/2013

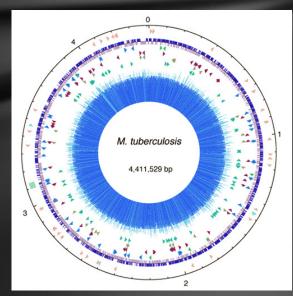
- Phenotypic prediction based on discovered single nucleotide polymorphisms (SNPs)
 - 1. Consideration: Variable MIC for individual point mutations
 - 1. Likely causes:
 - **1**. Highly localized consideration of genetic variation.
 - 2. Not all resistance conferring mutations are known
 - 3. Multiple functional pathways could cause resistance
 - 2. Partial solution: Combination of point mutations can help

- 2. Important information that a broader look at the genome could provide:
 - 2. Treatment Failure:
 - 2. exogenous secondary infection?
 - 3. Endogenous evolution?
 - 4. Heteroresistance?
 - 3. Population Genetics:
 - 2. Metagenomic analysis
 - 3. Population dynamics
 - 4. Contact Tracing:
 - 2. Identification of point of original and any secondary infection(s)
 - 3. Early identification of an outbreak

Whole Genome Sequencing (WGS) as a Tool for a Broader Genomic Perspective

Process:

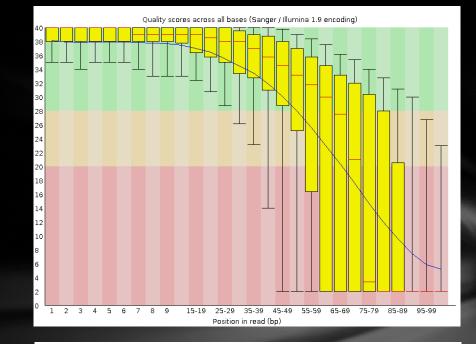

- 1. Sample Culture
- 2. DNA Extraction
- 3. Library Preparation
 - 1. Often includes (or is followed by) Amplification
- 4. WGS
 - 1. Illumina: Genome Analyzer, HiSeq, MiSeq, etc.
 - 2. Roche: 454
 - 3. Life Technologies: Ion Torent
 - 4. Pacific Biosciences: RS
 - 5. Etc.
- 5. Bioinformatics

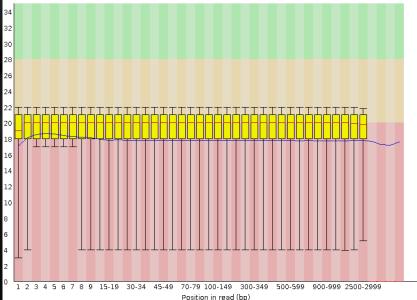


WGS Mycobacterium tuberculosis (Mtb)

What to consider:

- 1. Mtb has a circular genome
 - 1. 4.4 million bps
 - 2. Unbalanced genome (62.5% GC content)
 - 1. Will suffer from GC bias in the amplification step
- 2. WGS usually means mass processing
 - 1. Illumina Hiseq: needs 96 isolates
 - 2. Slow growth rate can become a big problem

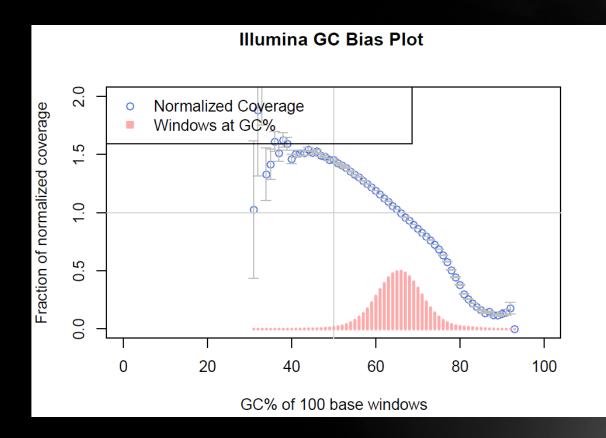

GCDD's Approach to WGS

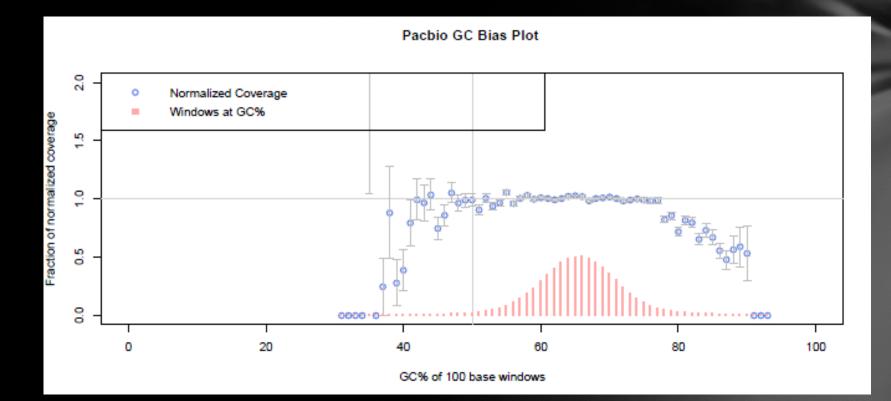

Process:

- 1. Platform: Pacific Biosciences RS system
 - **1**. Very long reads
 - 1. Easy de novo assembly
 - 2. Easy mapping to a reference genome
 - 2. No base quality score drop at the end of the read
 - 1. Needs much lower sequencing depth
 - 3. No systematic bias
 - **1**. No GC Bias
 - 4. Can sequence one isolate at a time.
 - Important for its utility in diagnostics

8/20/2013

Biomedical Informatics Research Cente (http://informatics.sdsu.edu/)




Quality scores across all bases (Sanger / Illumina 1.9 encoding)

Illumina's GC Bias Affecting Coverage Depth

PacBio Coverage Depth

Biomedical Informatics Research Center (http://informatics.sdsu.edu/)

GCDD's Approach to WGS

What has been done:

- 1. Developed an in-house bioinformatic pipeline (PacDAP) for base and variant calling.
 - Reliable base calling: PacDAP registers an uniform error rate of 50 in PHRED scale in base calling.
 - Higher than all other sequencing platforms including Sanger, and
 - 2. Significantly higher than industry standard (score of 30)
 - 2. Can identify SNPs on a genomic scale
 - 3. Have identified 28,963 unstable loci in the genome

GCDD's Approach to WGS

What has been done:

- 4. Rapidly detects all major mutations associated with resistance to seven drugs:
 - 1. First line: Rifampicin, Isoniazid
 - 2. Three aminoglycosides: Amikacin, Kanamycin, and Capreomycin
 - 3. Two fluoroquinolones: Moxifloxacin and ofloxacin
- 2. 366 isolates from four countries have been sequenced:
 - 1. India, Moldova, the Philippines, South Africa
 - 2. Have identified 28,963 unstable loci in the genome

GCDD's WGS Results, continued

Results of PacDAP analysis:

1. Novel Markers of Resistance:

Table 7. Number of the unannotated SNPs associated with drug resistance			
Phenotype	Novel SNPs		
INH ^R	37		
RIF ^R	10		
MOX ^R /OFX ^R	42		
AMK ^R	35		
CAP ^R	31		
KAN ^R	29		

25

GCDD's WGS Results, continued

Results of PacDAP analysis:

- 2. Lineage: Have identified mutations on a genomic scale for determining lineage at a much finer scale than MIRU/Spoligo Typing
- 3. Outbreak boundaries: Identified specific markers for two outbreaks in India Table 8. Minimum number of S
- 4. Compensatory Markers
- 5. Precursor Markers
- 6. Host Specific Markers
- 7. Evolutionary Markers
- 8. Molecular Clock loci

Table 8. Minimum number of SNPs identified inGCDD archive isolates in each category.		
SNP Category	Count	
Strain Specific	24	
Outbreak Specific	8	
Host Specific	78	
Evolutionary Path Specific	3	
Evolutionary State Specific	11	
Compensatory	3	
Precursor	2	

Acknowledgements

GCDD

- Dr. Antonino Catanzaro
- Dr. Timothy Rodwell
- Dr. Richard Garfein
- Dr. Donald Catanzaro
- Lynn Jackson
- Collaborators from
 - India
 - Moldova
 - The Philipinnes
 - South Africa

BMIRC

- Sarah Ramirez Busby
- Ashu Chawla
- Carmela Chen
- Afif Elghraoui
- Min Soo Kim
- Jessica Torres
- Victoria Zadorozhny