

Second-tier DNA Confirmation of Newborn Screening by Targeted Next Generation Sequencing

Edwin Naylor, Ph.D. MPH Andy Bhattacharjee , Ph.D. Erik Puffenberger, Ph.D.; Kevin Strauss, MD; Holmes Morton, MD

Newborn Screening & Clinical Genomics

1990's

Robert Guthrie develops simple Newborn Screening (NBS)

961

Development of automated MS/MS screening across several disorders

Current de facto standard

SCIENCE VOL 330 17 DECEMBER 2010 BREAKTHROUGH OF THE YEAR NEWSFOCUS

HUMAN GENOMICS

Carrier Testing for Severe Childhood Recessive Diseases by Next-Generation Sequencing

Callum J. Bell,¹* Darrell L. Dinwiddie,^{1,2}* Neil A. Miller,^{1,2} Shannon L. Hateley,¹ Elena E. Ganusova,¹ Joann Mudge,¹ Ray J. Langley,¹ Lu Zhang,³ Clarence C. Lee,⁴

2010-2012

OPEN OACCESS Freely available online

PLos one

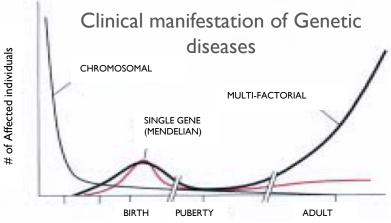
Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases

RESEARCH ARTICLE

DIAGNOSTICS

Rapid Whole-Genome Sequencing for Genetic Disease Diagnosis in Neonatal Intensive Care Units

Carol Jean Saunders,^{1,2,3,4,5}* Neil Andrew Miller,^{1,2,4}* Sarah Elizabeth Soden,^{1,2,4}* Darrell Lee Dinwiddie,^{1,2,3,4,5}* Aaron Noll,¹ Noor Abu Alnadi,⁴ Nevene Andraws,³ Melanie LeAnn Patterson,^{1,3} Lisa Ann Krivohlavek,^{1,3} Joel Fellis,⁶ Sean Humphray,⁶ Peter Saffrey,⁶ Zoya Kingsbury,⁶ Jacqueline Claire Weir,⁶ Jason Betley,⁶ Russell James Grocock,⁶ Elliott Harrison Margulies,⁶ Emily Gwendolyn Farrow,¹ Michael Artman,^{2,4} Nicole Pauline Safina,^{1,4} Joshua Erin Petrikin,^{2,3} Kevin Peter Hall,⁶ Stephen Francis Kingsmore^{1,2,3,4,5†}

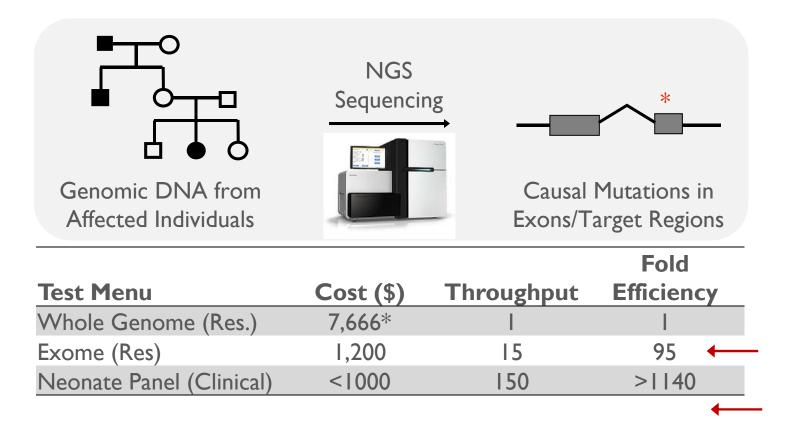

Why Newborn Genomics?

• Mendelian Diseases disproportionately affect Newborns

- ~3500 genetic diseases with molecular basis
- >10% of NICU admissions are genetic
- Current NBS tests limited to 29+ diseases
- 2nd tier DNA testing to validate biochemical results

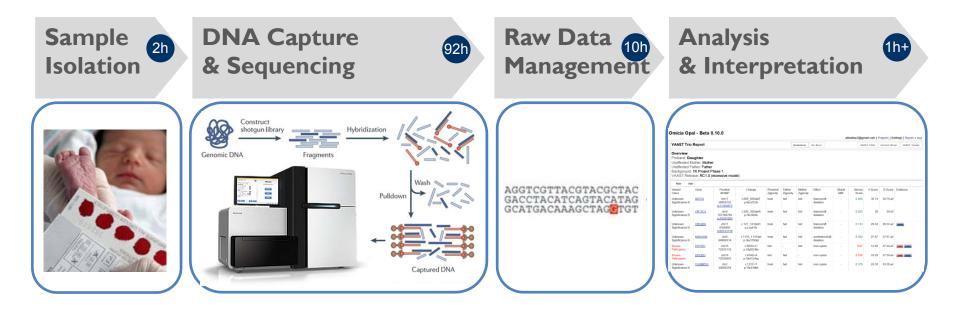
Advantage of NGS based DNA testing

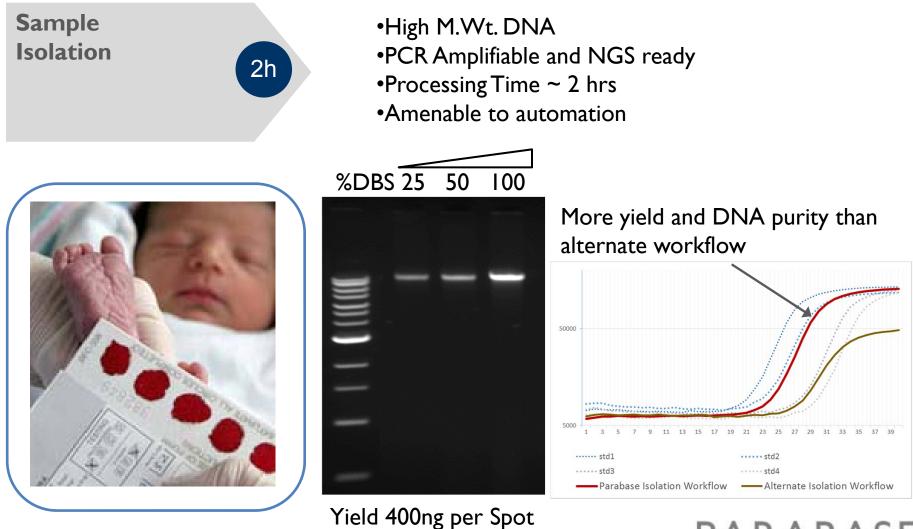
- Find causal variants (rare/novel) in gene(s)
- A 'universal' NGS approach avoids repeated, serial single gene testing
- Current Sanger sequencing is expensive (\$3-10K) and slow (3 months to 1 year)

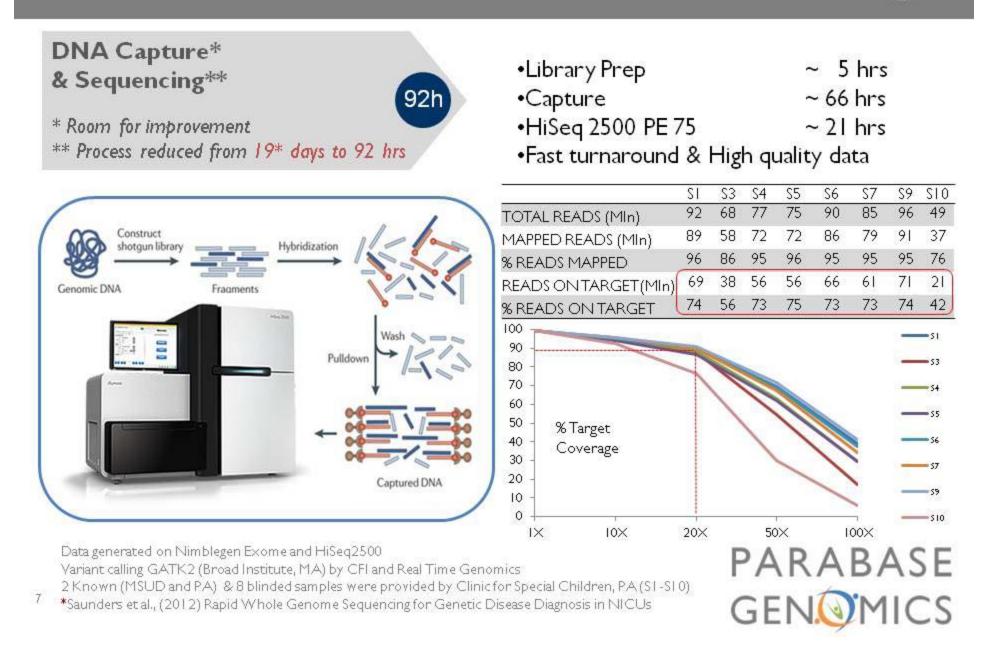

Gelehrter TD, Collins FS, Ginsburg D. Principles of Medical Genetics. 2nd ed. Baltimore, MD: Williams & Wilkins; 1998:1-42

NICU- Neonatal Intensive Care Unit NBS-Newborn Screening NGS-Next Generation Sequencing

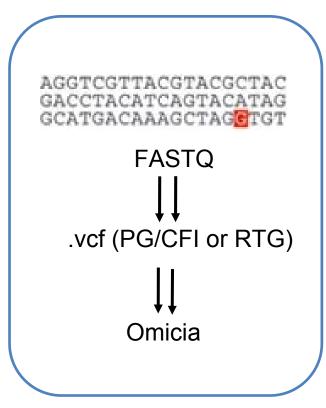
3


Why Targeted (Exome) Sequencing for now?


- Majority of known disease-causing mutations in exons
- Exome = protein-encoding parts of genes
- Targeted NGS is Cost & Throughput Efficient


*Saunders et al., (2012) Rapid Whole Genome Sequencing for Genetic Disease Diagnosis in NICUs

8 samples, 105 Hrs, <\$10,000 = Real Neonatal Genomics!


Raw Data Management (Mapping, alignment & variant calling)

We have integrated and tested two fast data management and processing workflows

Oclinical Future Inc. (CFI)-uses GATK2
Real Time Genomics (RTG)- proprietary

All Variant (.vcf) files processed in ~10 hrs.
High quality variant calls-PG/CFI pipeline

Total Variants	23Me	UCLA	PG/CFI
EdgeBio	39116	25552	36458
23Me		30182	43417
UCLA			25378
% Discordance	23Me	UCLA	PG/CFI
EdgeBio	0.36%	0.39%	0.27%
23Me		0.31%	0.35%
UCLA			0.13%

Analysis & Interpretation (Annotation, interpretation 1h & reporting)

•Tested two known cases: MSUD and PA •Used CRADD for FP/FN testing •Tested blinded samples, a set of 8 from 30

SE

NO	DISORDER	POPULATION	GENE	VARIANT	
	Dhamiltanaania	Amish (Managanita	DALL	702 (> 4	
1	Phenylketonuria Maala Suma Lisina Diagona	Amish/Mennonite Mennonite	PAH BCKDHA	782 G>A	Known
2	Maple Syrup Urine Disease	Mennonite	ACADM	985 A>G	
3	Medium Chain Acyl-Co Dehydrogenase Deficiency	Amish	GCDH	1262 C>T	
4 r	Glutaric Aciduria Type I	Amish/Mennonite	CFTR	1262 C>1 1522-24 del TTT	
5	Cystic Fibrosis	Amish/Mennonite		2974 A>G	
5	Severe Combined Immunodeficiency Disease	Mennonite	RAGI IL7R	2974 A>G 2 T>G	
/ 0	Severe Combined Immunodeficiency Disease			2 1>G 518 T>A	
8 9	21-Hydroxylase Deficiency	Amish Amish	CYP21A2 CYP11B1	1343 G>A	
	II-β-Hydroxylase Deficiency				
10	3-β-Hydroxy Steroid Dehydrogenase Deficiency	Amish	HSD3B2	35 G>A	
11	Galactose Uridyl Transferase Deficiency	Amish	GALT	563 A>G	
12	Biotinidase Deficiency	Mennonite	BTD	1459 T>C	
13	Biotinidase Deficiency	Amish	BTD	1368 A>C	
14	Biotinidase Deficiency	Amish	BTD	1330 G>C	
15	Homocystinuria	Amish	MTHFR	1129 C>T	Known
16	Propionic Acidemia B	Amish/Mennonite	PCCB	1606 A>G	
17	Adenosine Deaminase Deficiency (SCID)	Amish	ADA	646 G>A	
18	Glutaric Aciduria Type 3	Amish	C7orf10	895 C>T	
19	3-Methylcrotonylglycinuria 2β	Amish	MCCC2	295 G>C	
20	3-Methylcrotonylglycinuria 2β	Mennonite	MCCC2	518 ins T	
21	3-Methylcrotonylglycinuria 2β	Mennonite	MCCC2	687 A>C	
22	Mevalonate Kinase Deficiency	Mennonite	MVK	803 T>C	
23	Mevalonate Kinase Deficiency	Mennonite	MVK	1174 G>A	
24	Galactose Uridyl Transferase Deficiency	Amish	GALT	940 A>G	
25	Phenylketonuria	Amish	PAH	280-282 del ATC	
26	Phenylketonuria	Mennonite	PAH	IVS 10-11 G>A	
27	Phenylketonuria	Mennonite	PAH	IVS 12+1 G>A	
28	Tyrosinemia Type 3 (Hawkinsinuria)	Mennonite	HPD	85 G>A	
29	Tyrosinemia Type 3 (Hawkinsinuria)	Mennonite	HPD	479 A>G	PARABAS
30	Tyrosinemia Type 3 (Hawkinsinuria)	Mennonite	HPD	1005 C>G	1
31	Methylmalonic/Homocystinuria, cblC Deficiency	Amish	MMACHC	271 ins A	CENI CAL
32	Medium Chain Acyl-CoA Dehydrogenase Deficiency	Mennonite	ACADM	IVS 4-30 A>G	

Detecting Known Cases

Identifying causal variants using population frequency and disease category as filters

						PI+PD Hom.Re	126 Gene	I 26 GP,Comm					
Түре	Sample	Disease	Exome Variants		PI+ Probably Damaging		Panel Read >4 MAF<5%	on Hom. , Read >4 MAF<5%	Gene	Reads	Transcript Variant	: Protein Variant	Status
Amish*	whole blood	Propionic Acidemia	71,261	10,127	1,013	(11	19	2	РССВ	18	c.1606A>G	p.Asn536Asp	Hom.
Amish*	DNA	Propionic Acidemia	64,003	10,451	1,037	15	16	2	РССВ	5	c.1606A>G	p.Asn536Asp	Hom.
Mennonite*	DNA	Maple Syrup Urine Disease	68,703	10,217	1,031	19	19	3	BCKDHA	35	c. 1312 T>A	p.Tyr438Asn	Hom.
Mennonite*	DNA	Mental Retardation NS	69,946	10,329	1,086	21	ND	ND	CRADD	15	c. 382G>C	p.Gly128Arg	Hom.

Validation of False Positive/ False Negatives by comparing different Methods

CRADD Sample, Broad**	Exome Variants	Panel (in silico)	
SYNONYMOUS	11219	81	5
MISSENSE	10518	65	55 Broad Agilent
Nonsense	91	0	Parabase Gx-Ro
SMALL INDELS	889	4	
INTRON, UTRs	26083	232	
SPLICE SITE	160	1. 10	

Data generated on Nimblegen Exome; variant calling GATK (Broad Institute, MA); Omicia (Emeryville, CA)

•*Samples provided by Clinic for Special Children

•** Puffenberger *et al.*, 2012. PLoS ONE 7(1): e28936. Agilent Exome using Broad Pipeline

Detecting 8 blinded cases among 30

NO	DISORDER	POPULATION	GENE	VARIANT	Sample
	Phenylketonuria	Amish/Mennonite	PAH	782 G>A	S10
2	Maple Syrup Urine Disease	Mennonite	BCKDHA	3 2T>A ←	Known
3	Medium Chain Acyl-Co Dehydrogenase Deficiency	Mennonite	ACADM	985 A>G	SI
5	Cystic Fibrosis	Amish/Mennonite	CFTR	1522-24 del TTT	S3
7	Severe Combined Immunodeficiency Disease	Mennonite	IL7R	2T>G	S6
9	I I-β-Hydroxylase Deficiency	Amish	CYPIIBI	1343 G>A	S9
11	Galactose Uridyl Transferase Deficiency	Amish	GALT	563 A>G	S5
12	Biotinidase Deficiency	Mennonite	BTD	1459T>C	S7
15	Homocystinuria	Amish	MTHFR	1129 C>T	S4
16	Propionic Acidemia B	Amish/Mennonite	PCCB	1606 A>G ←	Known

All Samples 8/8 were correctly identified

								PI+PD >5							
No.	Exome Variants	Protein Impact (PI) PG/CFI	PI RTG	%SNV >40	Avg. Reads		PI+PD <5% AF Hom		l 26 Neona tal Panel	ditary	45	Reads	Transcript variant	Protein Variant	Ζγg.
SI	43373	13909	10468	95	102	10	2	10	Ĩ	4	ACADM	101	c. 1085 A>G	p.Lys362Glu	Hom.
S3	43537	14142	13549	95	72	12	0	12	0(4)	3(16)	CFTR	43	c.1521_1523del	p.Ser507del	Hom.
S4	43033	13968	10314	95	89	6	Ĩ	5	2	3	MTHFR	92	c.1251C>T	p.Arg417Cys	Hom.
S5	42985	14123	10417	94	88	14	2	12	1	4	GALT	79	c.564A>G	p.Gln188Arg	Hom.
S6	43759	14080	10585	95	99	10	0	10	0(3)	0(24)	IL7R	198	c.3T>G	p.metlArg	Hom.
S7	43706	14269	10749	95	97	14	0	14	0(4)	0(14)	BTD	74	c.1460T>C	p.Trp487Arg	Hom.
S9	43244	14051	10580	96	108	7	3	4	2	4	CYPIIBI	57	c.1343G>A	p.Arg448His	Hom.
											ADA	66	c.646G>A	p.Gly216Arg	Het.
											CDH23	64	c.3309A>G	p.Asn1103Ser	Het.
\$10	43356	14363	10266	92	48	16	0	16	4	15(61)	PAH	33	c.782G>A	p.Arg261Gln	Het.
											PAH	35	c.284_286del	p.(Ile95_Lys96del)	Het.
											MCC2	61	c.295G>C	p.Glu99Gln	Het,

Disease categories, allele frequency (AF) filters can quickly identify causal variants Panels (*in silico*) based on neonatal diseases & symptoms can rapidly identify mutants We were able to identify compound heterozygote (PAH) and carriers

Data was generated on variant calling of CFI and RTG and reviewed in Omicia Opal (Emeryville, CA) •All Samples were provided by Clinic for Special Children

12

Summary

- •Can be used as 2nd Tier Newborn testing including NICU
- •Causal variants identified rapidly in targeted panels
- Targeted NGS panel can be used for screening monogenic disorders
- •Targeted NGS is affordable unlike Whole Genome (\$\$\$)
- •Targeted NGS is efficient- Do >10 'samples to answer' in 100 Hrs.

For product, services and collaboration opportunities please contact us

www.parabasegenomics.com

info@parabasegenomics.com

Acknowledgements

Sample Isolation DNA Sequencing

Parabase

Genomics

Tanya Sokolsky, Ph.D.

Yael Katan-Khaykovich, Ph.D.

& colleagues

YCGA

John Overton, Ph.D.

& colleagues

Clinical Future Inc.

Alexander Zaranek, Ph.D.

Adam Berrey

Raw Data

Management

Jonathan Sheffi

Omicia

Analysis

& Interpretation

Martin Reese, Ph.D.

Real Time Genomics

Francisco De-LaVega, D.Sc.

Brian Hilbush, Ph.D.

NIH/NIDCD SBIR Phase I- 2013

Thank You