

Molecular Assessment of Dried Blood Spot Quality during Development of a Novel Automated *in situ* TREC qPCR Assay for SCID Screening

> J Bai, T Henry, J Benfer, S Berberich, T Kreman, and L DesJardin State Hygienic Laboratory at the University of Iowa

Assay Background

On-card/ *in situ* format adapted from CDC – DBS punched directly into 96-well PCR plate for processing and amplification

- Automated wash of DBS to reduce PCR inhibitors
- Automated addition of PCR master mix

Lab prepared DBS calibrators and TREC plasmid added for QA-QC

For more detail, visit our poster "A Novel, Automated Cost Effective *in situ* TREC qPCR Assay for Newborn SCID Screening".

Assay Optimization

DNA Extraction/DBS Wash

Separate Extraction Step

Current PHL Methods

Commercial Products

LifeTech Sample to SNP

Qiagen Generation

CDC on-card/in situ Method

epMotion 5075 LH automated DBS wash

novel buffer

PCR Amplification	
Master Mix*	
Primers	Cycling Parameters
Probes	Standard vs Fast Ramp
Fluorophores	Extension Times
RNP kits	Pre-PCR 95°C Incubation Time

Specimen Types

- Early *in situ* assay development experiments suggested minimal DBS washing needed; however, these experiments were performed with laboratory prepared cord-blood derived calibrators.
- Subsequent experiments with newborn DBS revealed significant differences between newborn DBS and lab prepared calibrators which directly impacted DNA extraction/DBS wash procedures.

DNA Recovery and Access Comparison

DNA Recovery and Access Comparison

Intra-DBS TREC Variation

Multiple 2mm punches sampled from 16 newborn DBS to determine potential variation in TREC amount across the DBS.

Intra-DBS TREC Variation

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Punches	15	11	10	13	14	11	12	11	12	13	11	15	10	15	12	11
Median	104	126	75	15	55	45	18	16	119	49	153	25	20	62	12	69
Std. Dev.	80	44	29	4	12	14	7	9	27	26	94	13	13	46	9	13

DNA Carryover during DBS Punching

Hand punch used to punch blank Guthrie card after newborn samples without bleaching

Hand punch used to punch blank Guthrie card after newborn samples with bleaching

DNA Carryover

DNA Carryover

- Low level RNP contamination of blank punches occurs when using a multi-puncher. The Ct values range from ~31 to 44. TREC contamination was observed in ~5% of the blank punches, with a Cq value of range from ~36 to 44.
- SCID screens which use separate DNA extraction step may not detect DNA carryover.

Laser Cutting Eliminates Nucleic Acid Cross-Contamination in Dried-Blood-Spot Processing

Sean C. Murphy," Glenda Daza," Ming Chang," and Robert Coombs",b

Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, USA,* and Center for AIDS Research, Harborview Medical Center, Seattle, Washington, USA*

Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing.

J. Clin. Microbiol. 2012, 50(12):4128

Newborn Data Overview

Model Performance Evaluation Surveys

Representative Newborn Amp Plot

CDC MPES#35 Amplification Plot

Survey sample identified by our assay as needing clinical follow-up*

Graph provided by Francis Lee, Centers for Disease Control and Prevention

Primary Immunodeficiency Patient Samples

Diagnosis	No. of cases	TREC Cqs
SCID	2	UNDET, UNDET
Omenn Syndrome	2	UNDET, UNDET
22q11 del	4	39, 38.5, 37, UNDET
hypogammaglobulinemia	1	32

Critical Parameters

Critical Findings and Parameters

- epMotion Instrument settings must be customized: Program available from SHL upon request
- Manufacturer's instrument-to-instrument variation had to be overcome by calibrating the instruments to perform identically. There were slight variations in volumes pipetted and X-Y-Z parameters.
- Customized dispense and aspiration parameters were needed to remove all buffer from the wells.
- It is necessary to optimize wash well depth, volume, speed, incubation time, number times mixed during each wash step, and number of washes.

PCR on ViiA7

- A 2mm spot, not 3mm, must be used for *in situ* PCR in 96-well Fast plate.
- Use separate threshold settings for RNP and TREC appropriate for qPCR.
- Of the Master Mixes tested, Fast Advanced had the best performance for efficiency and background.
- Volume of master mix is critical for *in situ* PCR.

Key Features

Automated and easily adapted to laboratories with limited molecular capacity

- Low hands-on time reduced throughput time compared to manual methods
- No storage issues for extracted nucleic acid
- Streamlined workflow no heating, shaking, centrifugation
- Use of a novel buffer found to be more effective and substantially less expensive than Generation DNA Purification Solution and Generation DNA Elution Solution (Qiagen), Limited disposables (only one PCR plate)
- Low cost (reagents and consumables)

SCID in situ Assay Portability

TREC Cq	Coralville	Ankeny
Minimum	27.68	27.78
Median	31.24	31.11
Maximum	34.86	35.06
Std. Deviation	1.137	1.084

RNP Cq	Coralville	Ankeny
Minimum	21.05	20.99
Median	24.07	23.84
Maximum	27.4	26.85
Std. Deviation	0.7698	0.8113

Quantification and Standard Curve Performance

- Screen positive criteria based on TREC quantity are highly variable (3.9 vs 40 vs 250).
- SCID TREC assays are based on the absence of detection using a molecular method which has the potential to detect as low as 1 copy. However, reliable detection of 1 copy is based on Poisson distribution.
- Therefore, any attempt to quantify as the copy number approaches 0 results in additional noise due to Poisson distribution.

References and Acknowledgements

- The in situ protocol was adapted from a procedure developed by the Centers for Disease Control and Prevention.
- Primer and probe sequences are from Douek, et al. Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet, 355 (2000), pp. 1875–1881
- Scott D. Rose Ph.D., Integrated DNA Technologies, designed the modified, dual quenched TREC probe.
- The TREC plasmid used in the standard curve was graciously provided by Jackie Gerstel-Thompson and Ann Comeau, New England Newborn Screening Program, University of Massachusetts Medical School.
- TREC plasmid was transformed and purified at the Roy J. Carver Center for Genomics (CCG), University of Iowa.
- Funding was provided by the Iowa Department of Public Health