

Pilot Plan 2013-2014

- 15,073,397 inhabitants (until 2012)
- 23% live in the metropolitan area
- birth rate 26.48 births / 1,000 inhabitants
- mortality rate for children < 1 year: 30/1,000
- 22 provinces
- 334 municipalities
- 25 different language communities

Pilot Plan 2013-2014

- 3 months training period in 2012
- 15 public and private hospitals
- 114 pediatric residents were trained
- 286 samples were collected during that time
- 14% of samples were of bad quality
- 8% of screening cards were lost in hospital
- high rotation rate in neonatal service

Pilot Phase

Objectives

General

- 1. Introduce the newborn screening to the private health system.
- 2. Evaluate the incidence of inborn errors of metabolism in the selected areas.

Pilot Phase

Objectives

Specific

- 1. Evaluation and selection of the areas to be screened.
- 2. Training to the health group from each hospital in charge of the neonatal units.
- 3. Definition of the critical route from sampling to shipping.
- 4. Standardization of the NBS laboratory protocols
- 5. Evaluate the incidence of Congenital Hypothyroidism in the selected hospitals
- 6. Evaluate the incidence of Cystic Fibrosis in the selected hospitals
- 7. Evaluate the incidence of Congenital Adrenal Hyperplasia in the selected hospitals
- 8. Evaluate the incidence of Phenylketonuria in the selected hospitals
- 9. Evaluate the incidence of Biotinidase deficiency in the selected hospitals

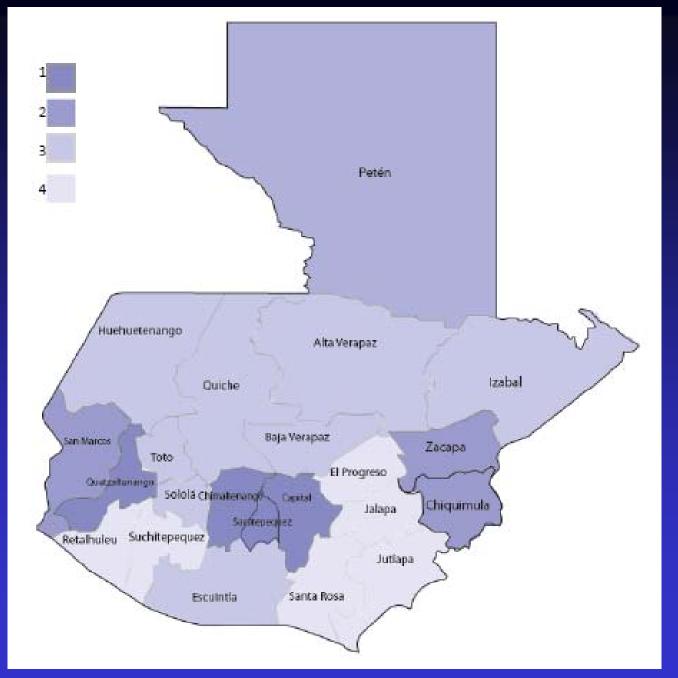
Pilot Phase

Congenital Hypothyroidism

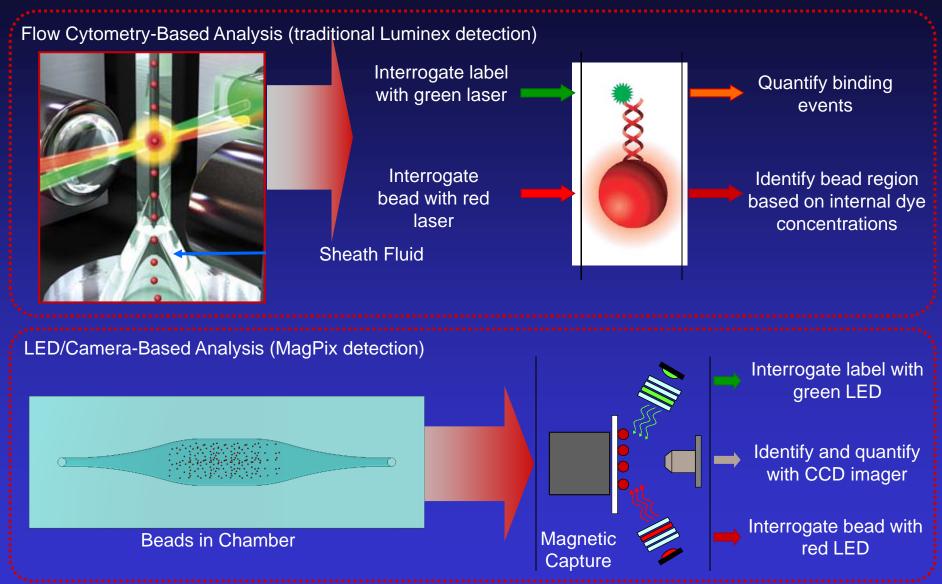
Phenylketonuria

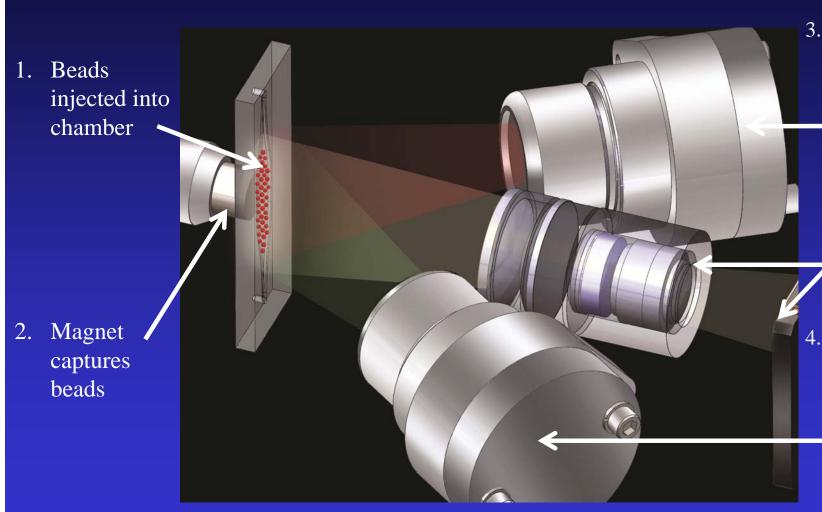
Congenital Adrenal Hyperplasia

Cystic Fibrosis


Biotinidase deficiency

	sep- 12	oct- 12	nov- 12	dic- 12	ene- 13	feb- 13	mar- 13	abr- 13	may- 13	jun- 13	jul- 13	ago- 13	sep- 13	oct- 13	dic- 13	ene- 14	feb- 14		may- 14
Evaluation of the Areas																			
Pre analytic logistic																			
Analytic logistic and laboratory standardization																			
Education and Training the personal involved in the NBS																			
Post analytic phase coordination																			
Standarization																			
First Sampling																			
Analysis of the result from first sampling																			
Correction to the logistic fails documented																			
Second Sampling																			
Analysis of the result from second sampling																			
Correction to the logistic fails documented					<u> </u>														
Mini System Implementation					<u> </u>														
Analysis of the result from implementation sampling																			
Correction to the logistic fails documented																			
Macro System Implementation																			


Technology



MAGPIX: Technology – LED's instead of Lasers

MAGPIX: Detection Module

Red LED illuminates beads.
Determines locations of each bead region in the chamber

Lens and Camera

Green LED illuminates bead surface.
Detects
- presence of bound antigens and antibodies

Results

	target	mean	sd	CV	recovery
TSH (C1)	12.3	12.7	1.6	12.7	103.3
TSH (C2)	39.5	38.2	4.0	10.4	96.6
TSH (C3)	79.3	81.4	10.2	12.6	102.7
T4 (C1)	2.5	2.8	1.0	34.8	112.0
T4 (C2)	6.3	6.6	1.2	18.6	104.8
T4 (C3)	16.0	15.7	1.7	10.8	98.2
17-OHP (C1)	15.1	20.2	4.8	23.6	133.8
17-OHP (C2)	52.5	60.2	9.4	15.6	114.7
17-OHP (C3)	78.1	93.5	11.4	12.2	119.8
IRT (C1)	21.6	23.3	5.2	22.2	107.9
IRT (C2)	62.3	63.6	10.0	15.8	102.1
IRT (C3)	122.2	140.3	30.3	21.6	114.8

TSH in [mU/L] (Serum)

T4 in [µg/dL (Serum)

17-OHP in [ng/mL] (Serum)

IRT in [ng/mL] (Blut)

Recovery in [%]

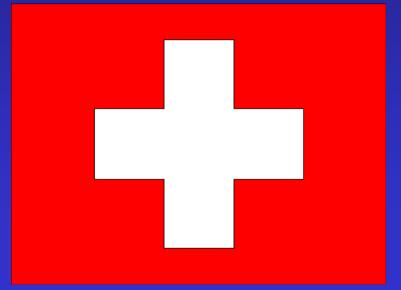
Results (Zurich – Guatemala)

	range	mean diff. [%]	n	pos.
17-OHP	2.0-350	3.5	118	+
TSH	1.3-300	38	26	+
T4	0.55-21	6.4	17	+
IRT	30-600	6.3	22	+

Acknowledgement for Support

SSIEM

Laboratory Staff


Our Screening Laboratories

