Stuart Nicholls & Kevin Southern

Considering Consent: Factors Influencing Parental Perceptions of Decision Quality When Accepting Newborn Screening

Disclosures

Take home message

If we want to better understand parental decision making we need to consider the context in which screening is provided.

Overview

- Background: Screening in the UK
- Parental decision-making and newborn screening
- Methods: Measures and modeling
- Results
- Conclusions

Screening in the UK

- 3-5 days post-birth, usually at home
- (Community) midwife led
- Informed consent:
- "Explain the procedure to parents and record in the maternity record that newborn blood spot screening has been discussed and recommended, the booklet given and consent sought."
- Verbal consent is adequate (written consent is required in Scotland)." [1]

Decision-making and NBS

- Knowledge recall issues
- Education materials use?
- Uptake rates administration? Low level of refusal
- Decision quality
 - Decision-making process
 - Statistical variation

Aim

 To model identified factors that influence parental decisional quality within the context of newborn bloodspot screening

Methods

- Cross-sectional survey
- Survey items developed based on prior qualitative data and existing tools such as The General Trust in Physicians Scale [2,3] and Revised Susceptibility, Benefits, and Barriers Scale for Mammography Screening [4]
- Random sample (n=500) of parents from Merseyside and Cheshire
- Year 2008 (N=28348)
- Excluded if child subsequently died or severely ill

Methods

- Analyzed using:
 - Confirmatory Factor Analysis (measurement), and
 - Structural Equation Modeling (structural)
- Assessed using:
 - Satorra-Bentler χ² (seek n.s. χ²)
 - Goodness of fit indices: RMSEA (<0.05), CFI (>0.9)
 - Parameter estimates (size, direction)

Methods

Latent variable	Indicator (scale)	Cronbach's alpha	Factor loading
Perceived knowledge (PCK)	Perceived understanding of motivation (Mot)	0.854	0.916**
	Perceived understanding of Procedural aspects (Proc)	0.816	0.805**
	Perceived understanding of Condition (Cond)	0.898	0.744**
Attitudes toward screening (ATTSCR)	Perceived Risk (Risk)	0.775	0.443**
	Perceived Benefits (Ben)	0.871	1.00**§
Perceived choice (CHOICE)	Ability to Make a Choice (Abch)	0.793	0.622*
	Availability of Choice (Avch)	0.730	0.593**
Attitudes toward medicine (ATTMED)	Trust in the Midwife (Mid)	0.831	0.659**
	Trust in the healthcare system (Trustsys)	0.629	0.782**
Decisional quality (DCQ)	Uncertainty Subscale of ODCS (Unc)	0.907	0.9**
	Effectiveness Subscale of ODCS (Eff)	0.898	0.935**

^{**}p<0.01, \S = item constrained to have error variances greater than zero

- 154 respondents (32%)
- 3 surveys had large amounts of missing data.
- Multiple imputation (ANOVA n.s.)

Item	Number	% *
Age group: <30 years	50	32.5%
Number of children: 1	55	35.7%
Highest educational level: high school or below	31	20.1%
Ethnicity: White	147	95.5%
Household income: < £11500	16	10.4%

^{*} Indicates valid percent from respondents completing the question

$$\chi^2$$
 (df=48) = 61.396, (p = 0.093)
CFI = 0.979
RMSEA = 0.043

$$R^2$$
 (DCQ) = 66%

$$\chi^2$$
 (df=48) = 61.396, (p = 0.093)
CFI = 0.979
RMSEA = 0.043

$$R^2$$
 (DCQ) = 66%

$$\chi^2$$
 (df=48) = 61.396, (p = 0.093)
CFI = 0.979
RMSEA = 0.043

$$R^2 (DCQ) = 66\%$$

$$\chi^2$$
 (df=48) = 61.396, (p = 0.093)
CFI = 0.979
RMSEA = 0.043

$$R^2$$
 (DCQ) = 66%

$$\chi^2$$
 (df=48) = 61.396, (p = 0.093)
CFI = 0.979
RMSEA = 0.043

$$R^2$$
 (DCQ) = 66%

Conclusions

- Attitudes research tends to focus on the immediate test [5-7]. A failure to differentiate the general and specific may overemphasize the impact of specific attitudes to screening
- Perceived choice positively affects decision quality.
- Role of the health care professional

The NBS system

Limitations

- Parents appeared to be older and more educated
- The sample size is also relatively small, and did not allow for group comparisons, such as comparing primaparous and multiparous parents
- The response rate of 32% is also relatively low, but comparable to other survey research in NBS [8, 9, 10]
- All parents had accepted newborn screening

Acknowledgements

- Dr. Mairi Levitt (Lancaster University, UK)
- Prof. Paul Fearnhead (Lancaster University, UK)
- Prof. Brenda Wilson (University of Ottawa, Canada)
- Mrs. Elaine Hanmer (Alder Hey Children's Hospital, UK)
- Those involved in the development and pilot testing of the questionnaire, including representatives of Save Babies Through Screening Foundation (UK).
- Economic and Social Research Council (UK)
- Canadian Institutes of Health Research (Canada)

References

- 1. UK Newborn Screening Programme Centre. 2012. Guidelines for newborn blood spot sampling. London, UK:
 UK National Screening Committee.
- 2. Dugan E, Trachtenberg F, Hall MA. 2005. Development of abbreviated measures to assess patient trust in a physician, health insurer, and the medical profession. BMC Health Services Research. 5(64): 1-7.
- 3. Hall MA, Camacho F, Dugan E, Balkrishnan R. 2002. Trust in the medical profession: conceptual and measurement issues. Health Serv Res. 37(5): 1419-39. 4. Champion VL. 1999. Revised susceptibility, benefits, and barriers scale for mammography screening. Research in Nursing & Health. 22: 341-8.5. Al-Jader et al 1990.
- 6. Campbell E, Ross LF. 2003. Parental attitudes regarding newborn screening of PKU and DMD. American Journal of Medical Genetics. 120A(2): 209-14. doi: 10.1002/ajmg.a.20031.
- 7. Campbell E, Ross LF. 2005. Parental attitudes and beliefs regarding the genetic testing of children. Community Genetics. 8: 94-102.8. Davey et al 2006.
- 8. Davis TC, Humiston SG, Arnold CL, Bocchini JA, Jr., Bass PF, 3rd, Kennen EM, et al. 2006. Recommendations for effective newborn screening communication: results of focus groups with parents, providers, and experts. Pediatrics. 117(5 Pt 2): S326-40. doi: 10.1542/peds.2005-2633M.
- 9. Mischler EH, Wilfond BS, Fost NC, Laxova A, Reiser C, Sauer CM, et al. 1998. Cystic Fibrosis Newborn Screening: Impact on Reproductive Behavior and Implications for Genetic Counseling. Pediatrics. 102: 44-52.
- 10. Ciske DJ, Haavisto A, Laxova A, Rock LZM, Farrell PM. 2001. Genetic Counseling and Neonatal Screening for Cystic Fibrosis: An Assessment of the Communication Process. Pediatrics. 107(4): 699-705. doi: 10.1542/peds.107.4.699.