CYP21A2 Mutations Found in Congenital Adrenal Hyperplasia Patients in the California Population

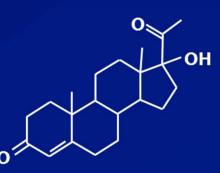
Christopher N. Greene, Ph.D.

Newborn Screening and Molecular Biology Branch National Center for Environmental Health Centers for Disease Control and Prevention, Atlanta, GA

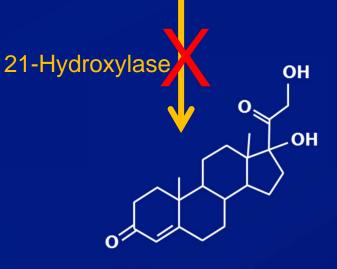
> National Center for Environmental Health Division of Laboratory Sciences

21 Hydroxylase Deficiency

Classic CAH – Salt Wasting


- Severe to complete loss of 21-OH activity
 - Loss of electrolyte homeostasis
 - Adrenal crises and risk of death

Classic CAH - Simple Virilizing


- Partial 21-OH activity
 - Normal sodium balance
 - Elevated androgen production

Non-classical CAH

Usually asymptomatic until puberty

 $17-\alpha$ Hydroxyprogesterone

11-Deoxycortisone

Primary CAH Newborn Screen

Primary Screen by Immunoassay for 17-\alpha OHP

High false-positive rate

- 17- α OHP levels are high in premature and/or stressed babies
 - Stratification by birth weight or gestational age for 170HP cut-offs
- Lack of specificity with immunoassay
 - Cross-reaction with other steroids
 - Matrix effects

Second-Tier CAH Screens

CAH Steroid Profiling by LC MS/MS

([17-OHP] + [4-androstenedione]) / [cortisol]

CAH Molecular Screening of CYP21A2 mutations

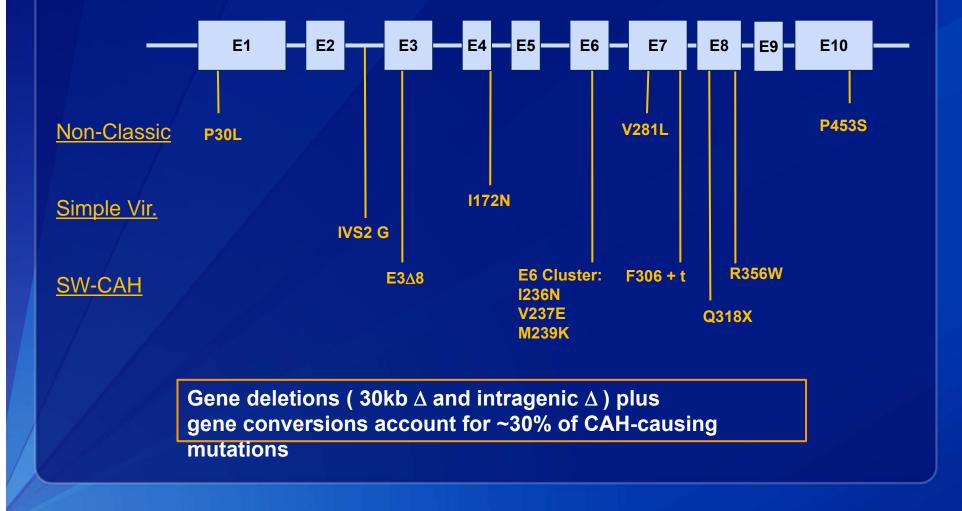
- Gene rearrangements
 - PCR or Multiple Ligation Probe Amplification (MLPA)
- CYP21A2 mutation analysis
 - Multiplex mutation panel genotyping
 - Complete gene sequencing

Collaboration with California NBS

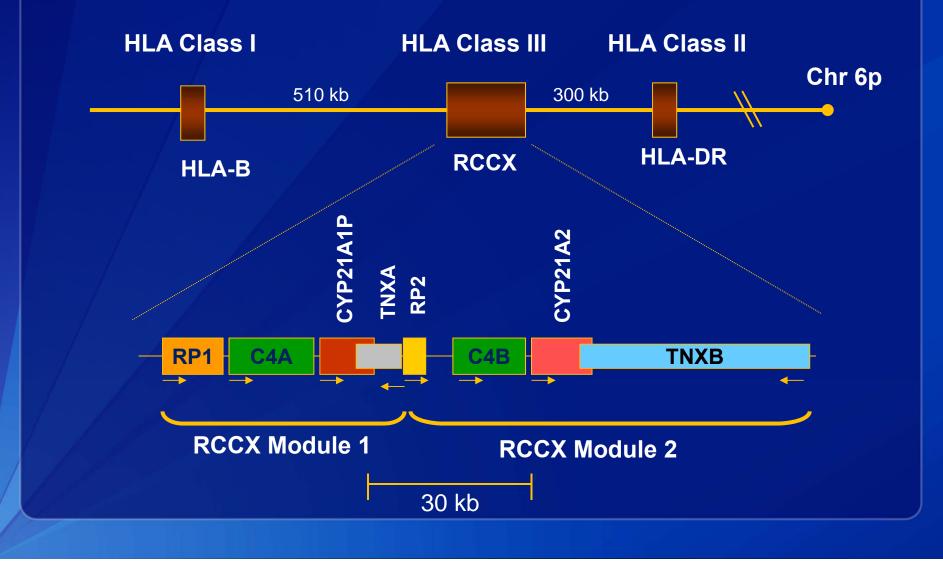
California has been screening for CAH since 2005

- Primary 17OHP screen with FIA four birth weight cutoffs
- 2nd tier MS/MS for steroid panel for slightly elevated 170HP
- Collaboration to characterize newborn specimens of CAH cases
 - Mixture of 128 of Classic and Non-classic CAH and screen negatives
 - 50 normal controls, blinded to analysts

 Goal: Determine if genotype analysis of CYP21A2 could increase the specificity of CAH screening for California NBS

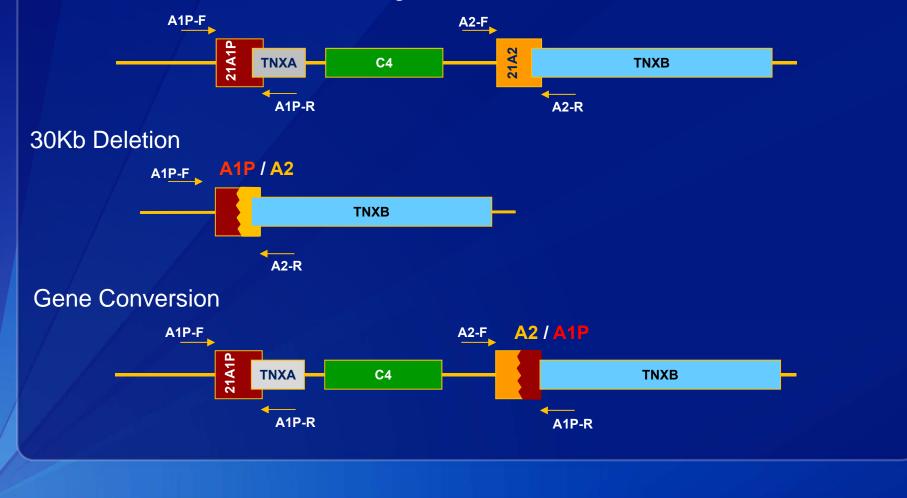

Challenges for CAH Molecular Screening

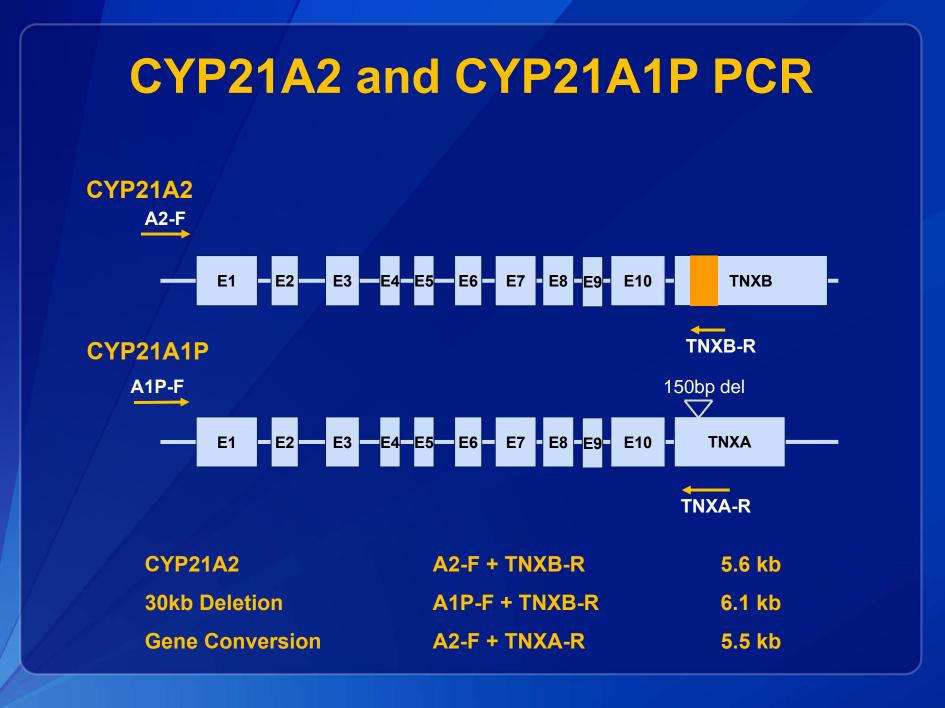
CAH is a multi-gene disorder


- 90-95% due to 21OH deficiency CYP21A2
- 5% due to 11β-hydroxylase CYP11B1
- 17α-hydroxylase, 3β-hydroxysteroid dehydrogenase, lipoid CAH
- Chromosomal region is complex
 - RCCX gene module repeats
 - CYP21A1P pseudogene sequence 98% identical to CYP21A2

Not known if common mutation panel adequately covers the California population

Common CYP21A2 Mutation Panel




CYP21A2 Genomic Region

PCR-Based Detection of Chromosome Deletion and Gene Conversion Alleles

Most-common chromosome arrangement

Genotyping Approach

Long-range PCR profile to detect 30 kb deletions and gene conversions

Perform complete gene sequence of CYP21A2 and the 30 kb deletion and gene conversion PCR amplicons

Evaluate gene copy number by MLPA for 30 kb deletions, gene conversions, and possible hemizygous CYP21A2

Results of CYP21A2 Genotyping

128 from NBS screen positive and screen negative CAH cases

- 114 samples with CYP21A2 mutations 89% of cases
- 9.6% of 228 chromosomes with multiple mutations

50 normal population controls

- 1 carrier for Salt Wasting allele (M239K)
- 1 carrier for a gene conversion
- 4 carriers for likely tri-allelic RCCX repeat with Q318X in cis
- 2 carriers for Non-Classic alleles, V281L and c.*13A>G

CYP21A2 Panel Mutations

CYP21A2 Mutations	Phenotype	Count	%	US Frequency (%)*
P30L	Non-Classical	1	0.4	0.8
IVS2G	Salt Wasting/S. Virilizing	59	25.7	23.4
IVS2G + Other Mutations		12	4.8	1.6
Exon 3 8bp deletion	Salt Wasting	8	3.5	0.5
I172N	Simple Virilizing	13	5.7	12.6
I172N + Other Mutations		4	1.7	
I236N/V237E/M239K	Salt Wasting	8	3.5	1.1
V281L	Non-Classical	4	1.7	12.6
F306+1	Salt Wasting	3	1.3	0.3
Q318X	Salt Wasting	15	6.5	3.3
Q318X + Other Mutations		7	3.0	
R356W	Salt Wasting	18	7.8	3.6
P453S	Non-Classical	0		0.5
CYP21A2 Gene Recombinants	Phenotype	Count	%	US Frequency (%)*
30 KB Deletion	Salt Wasting	47	20.4	30.5 - Combined
A2 Deletion - non 30 KB del PCR	Salt Wasting	12	5.2	
Large Scale Gene Conversion	Salt Wasting	4	1.7	

*Finkielstain et al. (2011). Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrin Metab 96, E161–172

CYP21A2 Mutations not on Panel

				US Frequency
Additional Mutations	Phenotype	Count	%	(%)*
c4C>T, c.738+74T	Undetermined	1	0.43	
T201A	Predicted Benign	1	0.43	
I291N	Predicted Damaging	1	0.43	
R316X	Salt Wasting	1	0.43	
H366Y	Salt Wasting	3	1.30	0.8
H366Y, c.*13A>G	Salt Wasting	1	0.43	
	Salt Wasting/S.			
R427C	Virilizing	1	0.43	0.3
R483∆1nt	Salt Wasting	5	2.17	
R483W, c.*13A>G	Salt Wasting	1	0.43	
c.*13A>G	Non-Classical	1	0.43	

3 specimens detected by PCR or Common Panel A2 Deletion / I291N A2 Deletion / H366Y A2 Deletion / c.-4C>T, C.738+74T

*Finkielstain et al. (2011)

Highlights of California CAH Cases

Out of 128 CAH screen-positive specimens
114 with mutations for both copies of CYP21A2

26 specimens with <u>></u>2 mutations in cis in an allele – phase determined for all but one sample

Overall CYP21A2 mutation profile similar to large US family study

- 9 mutations not on common panel
- 111/114 specimens with at least 1 mutation from panel

Questions Going Forward

CYP21A2 mutation panels

- Classic CAH vs Non-Classic mutations
- What is minimal frequency for inclusion

Samples with no CYP21A2 mutations detected

- Fail-safe 17OHP cutoffs?
- Additional gene analysis
 - CYP11B for 11 β -OH, CYP17A for 17 α -OH

Screening appropriate procedure

- Rapid and cost effective targeted genotyping from DBS
- Interpretation of results gene rearrangements and phasing

Acknowledgments

California NBS

F. Lorey M. Kharrazi

CDC NSMBB

S. Cordovado

P. W. Mueller

D. Turner

Z. Detwiler

Sequoia Foundation

S. Graham

For more information please contact Centers for Disease Control and Prevention 1600 Clifton Road NE, Atlanta, GA 30333 Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348 E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

National Center for Environmental Health

Division of Laboratory Sciences