

The Emerging Role of Whole-Genome Sequencing in FDA's Food Safety and Regulatory Science Program

Eric W. Brown, Ph.D. Director Division of Microbiology **Center for Food Safety & Applied Nutrition** U.S. Food & Drug Administration College Park, Maryland 20740

"The Smokin' Hot Pepper"

Subscribe/Manage Account Place An Ad LAT Store Jobs Cars Real Estate Rentals More Classifieds Custom Publishing

(Salmonella Saintpaul outbreak – Summer 2008)

Genomic triaging is now possible for surveillance, testing, and traceability of foodborne contamination

THE EARLY YEARS...

FOODBORNE OUTBREAK INVESTIGATION: WGS analysis of foodborne salmonellae case study

This investigation focused on Salmonella Montevideo samples associated with red and black pepper used in the production of Italian-style spiced meats in a New England processing facility. This manufacturer was implicated in a major salmonellosis outbreak that affected more than 272 people in 44 states and the District of Columbia.

15-20x shot gun sequencing 35 pure culture isolates from patients, foods and Environmental samples.

Concatenate 40 variable genes for Phylogenetic analysis

Allard et al. 2012 **BMC** Genomics

Sequence variation arising from lab/bioinformatics sources did not affect phylogenetic inference IA_2010008282

FICE OF EGULATORY

CIENCE

Salmonella Montevideo

How we choose the isolates to include

FDA WGS Application to Food Contamination Events

4,5,12: i –

Montevideo black and red pepper Senftenberg black and red pepper Enteritidis shell/liquid eggs Heidelberg ground turkey Heidelberg chicken broilers Heidelberg chicken livers **Enteritidis custard Bareilly tuna scrape** Tennessee peanut butter/peanut butter paste Typhimurium peanut butter Braenderup peanut butter/nut butter Tennessee cilantro Agona dry cereal Agona papaya **Newport tomatoes Newport environmental** Kentucky - Cerro dairy/dairy farms Anatum spices/pepper flakes Javiana cantaloupes Saintpaul hot peppers

Lmono cantaloupes Lmono queso cheese Lmono potato salad Lmono artisanal cheeses Lmono avocados Lmono ricotta Lmono celery/chix salad Lmono smoked fish Lmono other herbs

Cronobacter infant formula

V para oysters

EcO157:H7 lettuce

STEC beef

...Numerous other taxa

Applications of WGS in the Food Safety Environment

- Delimiting scope and traceback of food contamination events (Track-N-Trace)
- Quality control for FDA testing and surveillance (Confidence in Regulatory Actions)
- Preventive control monitoring for compliance standards (the "repeat offender" project)

ID, geno/pheno typing schemes (AST,Serotyping,
 VP) (CVM,CDRH,CFSAN) – risk assessment and adaptive change in Salmonella and Listeria

SERVI

U.S. Food and Drug Administration Protecting and Promoting Public Health

62011, Illumina Inc. All rights reserved.

The Impact of WGS in the Traceability of Food Contamination Events

©2011, Illumina Inc. All rights reserved.

U.S. Food and Drug Administration Protecting and Promoting Public Health

Prevalence of Salmonella in all Produce

Recent Outbreaks

_	1998	S. Baildon 86 cases	
_	2000	<i>S.</i> Thompson	29 cases
_	2002	S. Newport	512 cases
		S. Newport	12 cases
		S. Javiana	90 cases
_	2004	<i>S.</i> Javiana	471 cases
		<i>S.</i> Braenderup	123 cases
_	2005	S. Newport	71 cases
		S. Enteriditis	77 cases
		<i>S.</i> Braenderup	76 cases
_	2006	S. Newport	107 cases
		S. Typhimurium	186 cases
_	2008	<i>S.</i> Saintpaul	1,442 cases
		-	

- Widely dispersed, individual patient-cases in many states
- Low attack rates, epidemiology is tedious
- Tracebacks are difficult due to complexity of the supply chain
- Intermittent, low-level contamination
- Implicated produce is rarely still available, the crop is no longer in the field

Newport Outbreak: Tomatoes

N SERVICE

Once tomatoes reach the supply chain, things really "simplify".

The Fresh-cut Tomato Supply Chain

OFFICE OF REGULATORY SCIENCE

Salmonella Tennessee & Peanut Butter

Comparative Genomic Analysis Of Peanut Butter-associated Salmonella Tennessee Provides Evidence For Assigning Contamination Sources Among Multiple And Contiguous Foodborne Outbreaks Authors: E. W. Brown¹, C. Keys¹, E. Strain¹, Y. Luo¹, C. Wang¹, T. Muruvanda¹, C. Pirone¹, S. Musser¹, M. Wilson², M. Allard¹; ¹U.S. FDA, College Park, MD, ²Forensic Sci. Program Western Carolina Univ., Cullowhee, NC Poster Presentation Day/Date/Time: Monday May 19, 2014 10:45 AM - 12:00 PM

Poster Board Number: 1422

- □ In 2007, nearly 630 persons infected with an outbreak strain of *Salmonella* Tennessee from 47 states.
- □ Strongly associated with consumption of peanut butter from single facility.
- Outbreak strain of Salmonella Tennessee isolated from several opened and unopened jars of peanut butter and from environmental samples obtained from the plant.
- □ In 2008-2009, a second outbreak was reported and also associated with peanut butter from an unrelated facility.
- □ Investigation determined that an S. Tennessee isolate detected during this second outbreak had a pulse-field gel electrophoresis (PFGE) pattern that was indistinguishable from the earlier 2007 S. Tennessee outbreak strains.

U.S. Food and Drug Administration Protecting and Promoting Public Health

Listeria monocytogenes and Support of FDA Compliance Standards

Isolates from Roos facility, distributed product, and patients who consumed product

A parting perspective...

Whole Genome Sequencing = one very powerful radar gun

U.S. Food and Drug Administration Protecting and Promoting Public Health

©2011, Illumina Inc. All rights reserved.

The Role of WGS in Quality Assurance of Microbiological Sampling

OFFICE OF REGULATORY SCIENCE

Quality Checks for Multiple Isolations from a Single Laboratory – *Salmonella enterica*

www.fda.gov

SCIENCE

Quality Checks for Isolations Matching Laboratory Control Standards – *E. coli* O157:H7

U.S. Food and Drug Administration Protecting and Promoting Public Health

@2011, Illumina Inc. All rights reserved.

Ecology and Adaptation: The emergence and persistence of Salmonella across the food supply

02011, Illumina Inc. All rights reserved

Biogeographical Metagenomic Surveys of Tomato Phyllosphere Microflora

Summary of statistically significant abundance of bacterial genera in VA and CA

CA

- Weissella
- Lactococcus
- Leuconostoc
- Bacillus
- Enterobacteriaceae, other

VA

- Pseudomonas
- Sphingomonas
- Xanthomonas
- Agrobacterium
- Hymenobacter

Strong antibiotic activity associated with Weissella, Lactococcus, Leuconostoc
Niche competition by Enterobacteriaceae, other ?

•Habitat preference created by *Pseudomonas, Sphingomonas, Xanthomonas* etc.

EGULATORY

Agricultural Practices

Fungicide Treatment – Tomatoes Methyl Bromide Treatments – Tomatoes

Water Sources used for Irrigation and Pesticide Applications – Tomatoes

Fungicide Trials

- •1 Control
- •2 Actigard
- •3 Kocide

U.S. Food and Drug Administration Protecting and Promoting Public Health

New Genomic Island

Name	Minimum	Maximum	Length	Direction	product
toxin CDS	43,465	43,788	324	forward	toxin
antitoxin CDS	43,124	43,444	321	forward	antitoxin
transcriptional regulator CDS	38,480	39,184	705	forward	transcriptional regulator
fatty acid transporter CDS	36,027	37,214	1,188	forward	fatty acid transporter
mechanosensitive ion channel protein MscS CDS	34,410	35,996	1,587	forward	mechanosensitive ion channel protein MscS
alkyl sulfatase CDS	32,360	34,267	1,908	forward	alkyl sulfatase
histidine phosphatase CDS	30,833	31,447	615	reverse	histidine phosphatase
transcriptional regulator CDS	28,266	28,532	267	reverse	transcriptional regulator
magnesium transporter CDS	24,110	24,766	657	forward	magnesium transporter
fimbrial usher protein CDS	20,181	22,691	2,511	reverse	fimbrial usher protein
fimbrial chaperone protein StdC CDS	19,404	20,129	726	reverse	fimbrial chaperone protein StdC
Positive regulator GrIA CDS	17,713	18,189	477	reverse	Positive regulator GrIA
transcriptional regulator CDS	16,860	17,720	861	reverse	transcriptional regulator
membrane protein CDS	14,535	15,275	741	reverse	membrane protein
ArsR family transcriptional regulator CDS	13,772	14,101	330	reverse	ArsR family transcriptional regulator
NADPH-dependent FMN reductase CDS	13,057	13,770	714	reverse	NADPH-dependent FMN reductase
RNA polymerase sigma 70 CDS	12,503	13,048	546	reverse	RNA polymerase sigma 70
arsenic resistance operon repressor CDS	12,065	12,427	363	reverse	arsenic resistance operon repressor
arsenic transporter ATPase CDS	10,287	12,044	1,758	reverse	arsenic transporter ATPase
ModE family transcriptional regulator CDS	9,845	10,213	369	forward	ModE family transcriptional regulator
arsenate reductase CDS	8,388	8,819	432	forward	arsenate reductase
arylsulfatase CDS	7,086	8,375	1,290	forward	arylsulfatase
arsenic transporter ATPase CDS	5,287	7,038	1,752	forward	arsenic transporter ATPase
arsenic resistance operon repressor CDS	4,907	5,269	363	forward	arsenic resistance operon repressor
arsenic resistance operon repressor CDS	4,506	4,859	354	forward	arsenic resistance operon repressor
nucleotidyltransferase CDS	2,538	4,313	1,776	forward	nucleotidyltransferase
integrase CDS	1	1,194	1,194	forward	integrase

U.S. Food and Drug Administration Protecting and Promoting Public Health

Functional Assays for SNPs

Better understanding of adaptive change in *Salmonella* and *Lm* may provide more accurate risk assessment as well as enhanced preventive control measures on the farm and in the processing plant.

WGS is revolutionizing the laboratory contribution to public health microbiology, outbreak investigation - food safety included.

WGS can be used to mitigate tracebacks and delimit the scope of food contamination events unlike ever before – numerous offshoot applications exist (i.e., compliance, quality assurance, risk assessment)

The development of international open source databases will empower WGS for sentinel surveillance work on a global scale

We are continuing to deploy the technology for applied food safety investigations and are continuing to develop metagenomic and next next gen applications for identification of foodborne pathogens.

Genome sequences are agnostic, portable, and instantly crosscompatible. One biological assay could work on all pathogen species. To be immediately useful all we need is the genome and a little metadata.

OFFICE OF

REGULATORY SCIENCE

U.S. Food and Drug Administration Protecting and Promoting Public Health

CFSAN Steven Musser Division of Microbiology-FDA

Marc Allard Charles Wang Peter Evans Jie Zheng George Kastanis Yan Luo Chris Keys Tim Muravunda **Ruth Timme** Becky Bell Justin Payne Thomas Hammack Dave Melka Division of Biostatistics-FDA Errol Strain Yan Luo James Pettengill FFRA-UK Robert Stones Alisdair Wotherspoon **OARSA-FDA** Mark Mammel Darcy Hanes Chris Grim Karen Jarvis Laura Ewing Joint Institute for Food Safety & Applied Nutrition **Guojie Cao Jianghing Meng** National Institutes of health **David Lipman** Jim Ostell William Klimke Center for Veterinary Medicine-FDA Shaohua Zhao Pat McDermott Daniel Tadesse Office of Regulatory Science-FDA Kelly Bunning John Callahan FDA Office of Foods Dave White Palmer Orlandi CDC and FSIS

John Besser Eija Trees Patti Fields Stephanie Defibaugh & oth

International Association for Food Protection Meeting, August 3-6, Indianapolis, IN

New Professional Development Group

Advanced Molecular Detection Analytics Organizational Meeting August 3rd, 1-3:00 PM, Room 116

To provide a forum for the exchange and sharing of information related to the development and use of advanced molecular approaches for the detection and identification of microbial contaminants of food and related commodities