The Basics of Understanding Whole Genome Next Generation Sequence Data

Heather Carleton, MPH, Ph.D.

ASM-CDC Infectious Disease and Public Health Microbiology Postdoctoral Fellow PulseNet USA Next Generation Subtyping Unit NCEZID/DFWED/EDLB June 2nd, 2014

APHL 2014

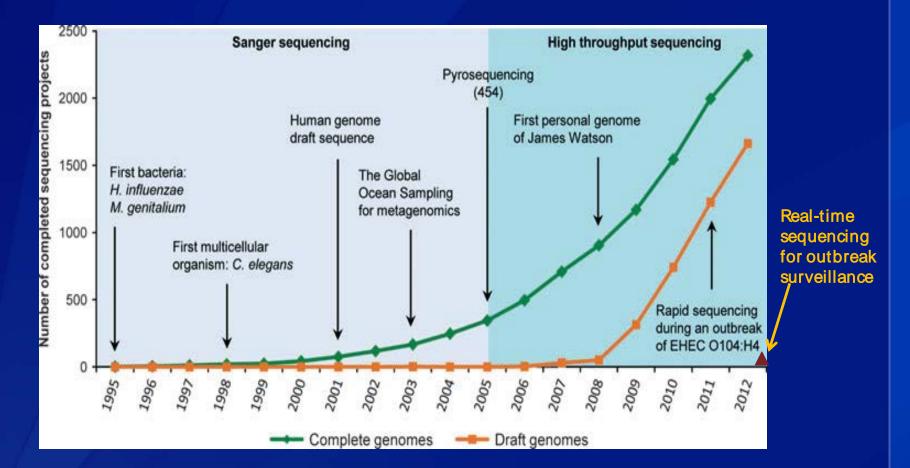
National Center for Emerging and Zoonotic Infectious Diseases Division of Foodborne, Waterborne and Environmental Diseases

Objectives

Provide a basic overview of the terminology surrounding whole genome sequence (WGS) data

Explain ways to analyze WGS data to characterize isolates

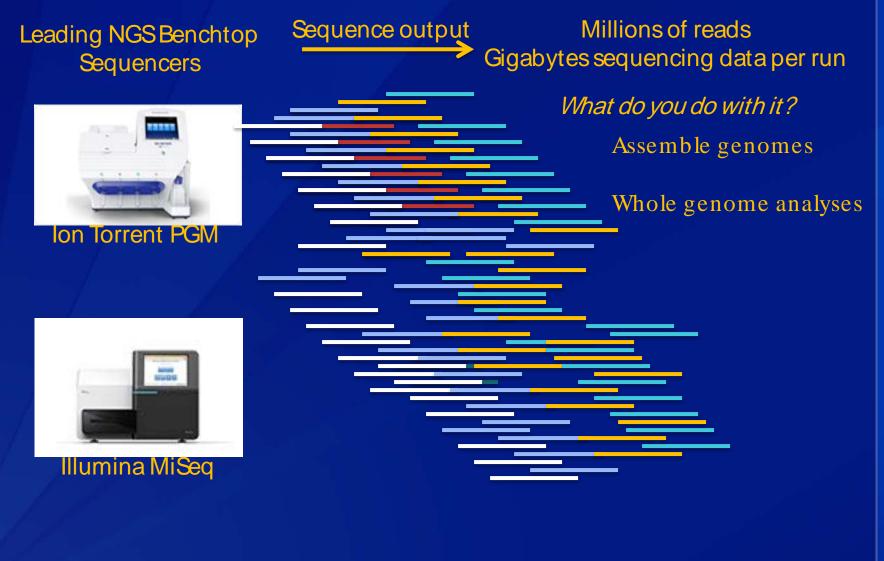
PulseNet vision for implementing whole genome sequencing


The evolution of whole genome sequencing

- First generation dye terminator (Sanger) sequencing
 - ABI 3730xl
- Second generation Massive parallel sequencing by synthesis
 - Roche 454, GS Junior pyrosequencing
 - Illumina GAIIx, Hiseq, Miseq, NextSeq synthesis with reversible terminators
 - IonTorrent PGM, Proton semiconductor sequencing

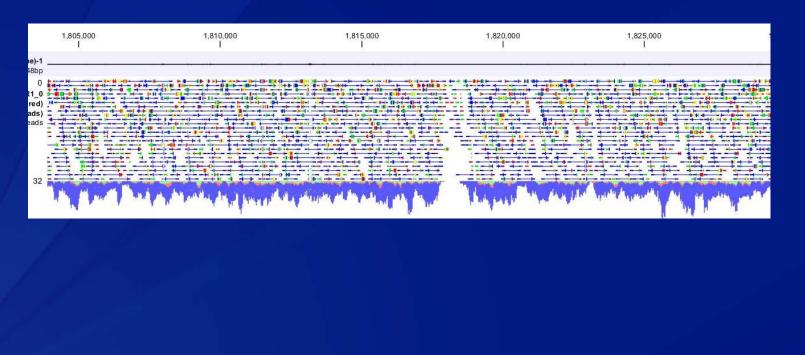
Third generation – Single cell sequencing by synthesis

- PacBioRS
- Nanopore


Evolution of whole genome sequencing (cont'd)

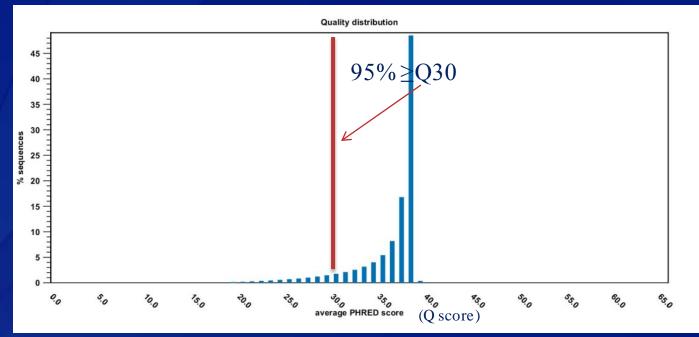
Milestones in whole genome sequencing

Bertelli, C. and Greub, G. (2013) Clin. Microbiol. Infect. Epub Apr 24


Next Generation Sequence Data Generation

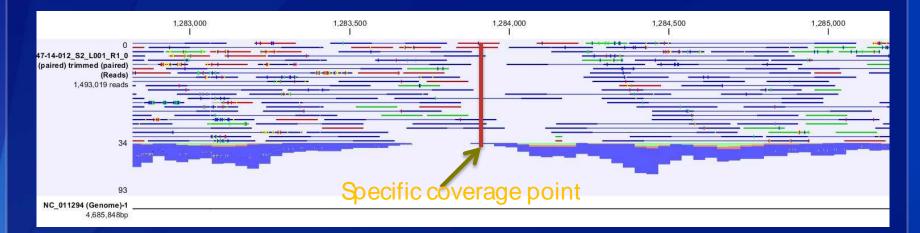
WGSterms: Raw Read

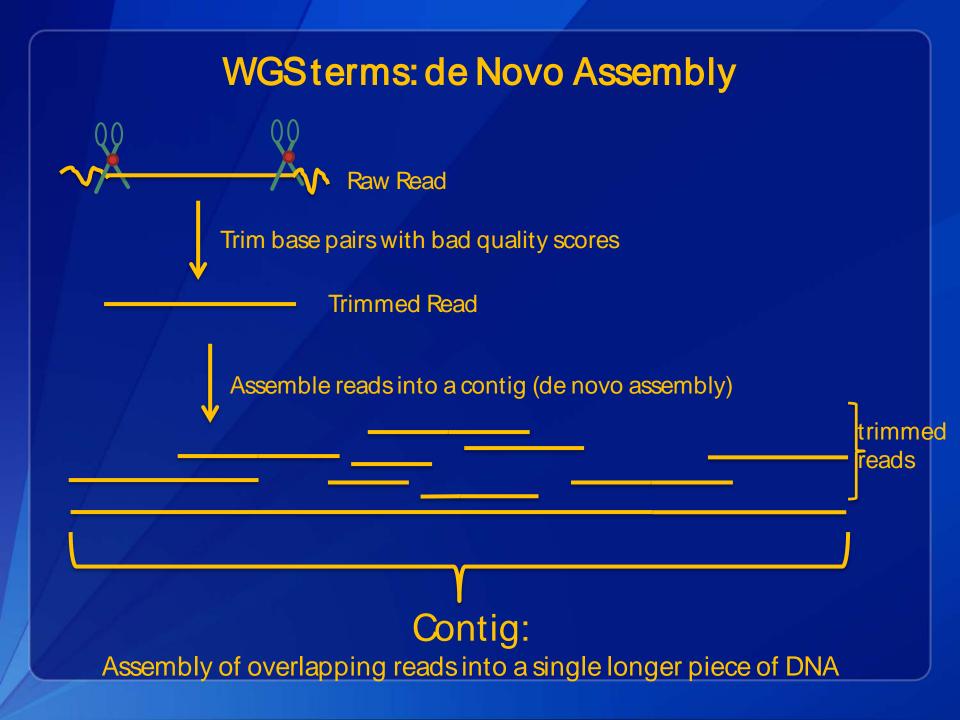
Raw Read


- Single sequencing output from your NGS machine; length depends on sequencing chemistry
- Generally 100 thousand millions of raw reads are generated per isolate sequenced using NGS

WGSterms: Quality Scores

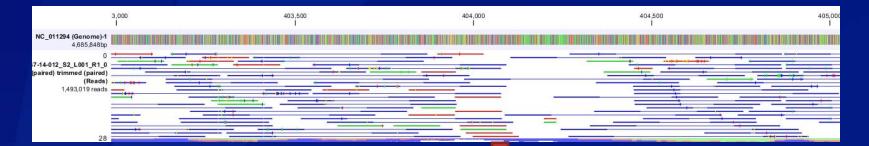
Quality scores


- Likelihood the base call is correct
 - Phred part of fastq file generated from sequencer that scores base call quality
 - Q30 the percentage of base calls that have a 1 in 1000 chance or less of being incorrect (Q20 – 1 incorrect in 100 base calls)
 - indicates how much usable data you have from a run


WGSterms: Coverage

Coverage

- Average divide the total # of bases by the genome size (i.e. 156,000,000 (total bases from sequencer)/ 3,000,000 (size of genome = 52x coverage))
- Specific how many reads span the 1 base you are looking at



-Average genome coverage of genome example is 41x – coverage at specific coverage point is 7x

WGSTerms: Reference-guided Assembly

Map raw reads to a closely related reference genome

Contigs extracted from read mapping of raw reads (can set quality and coverage thresholds)

Contig 1

Contig 2

Choosing de Novo versus Reference-guided Assembly

<u>de Novo</u> -Computationally costly

-Difficult if there are repeat regions

-Assembles genome and plasmids

<u>Reference – guided</u>

-Requires closely related good reference genome

-Only assembles reads that match the reference – does not assemble plasmids or insertion elements if there is no reference

Assessing Assembly Quality

Assembly metrics can indicate sequence quality

- Number of contigs raw reads assembles into
 - Good: *E coli*<200, *Salmonella*<100, *Listeria*<30
- N50 statistic- Calculated by summarizing the lengths of the biggest contigs until you reach 50% of total combined contig length
 - Good:>200,000 bp

3 Million base pair genome (determined by sum of contig lengths)

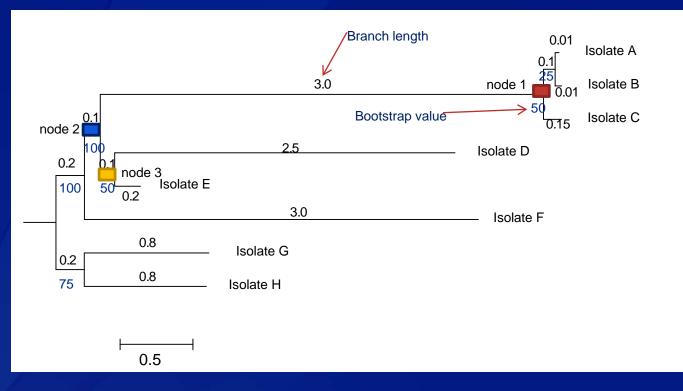
750,000bp	500,000bp	350,000bp
	*N50 is	s 350,000 bp
Indicates 1.5 Million base pairs, or cutoff		
for 50% combined contig length (N50)		

Ways to Analyze WGS data

Kmer analysis

Whole genome multilocus sequence typing (wgMLST)

 High quality Single
 Nucleotide Polymorphism (hqSNP) analysis Computational demands

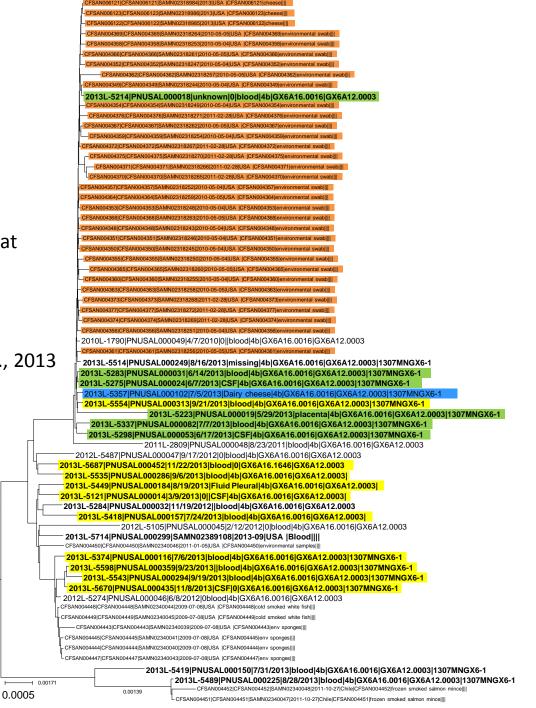

K-mer analysis

□ K-mer:

- Computer algorithms use a sliding window to chop up raw reads into shorter lengths (k) of DNA
- k is determined by which length gives you the best specificity and most adequate resolution
- Comparing similar and unique kmers gives you a measure of relatedness

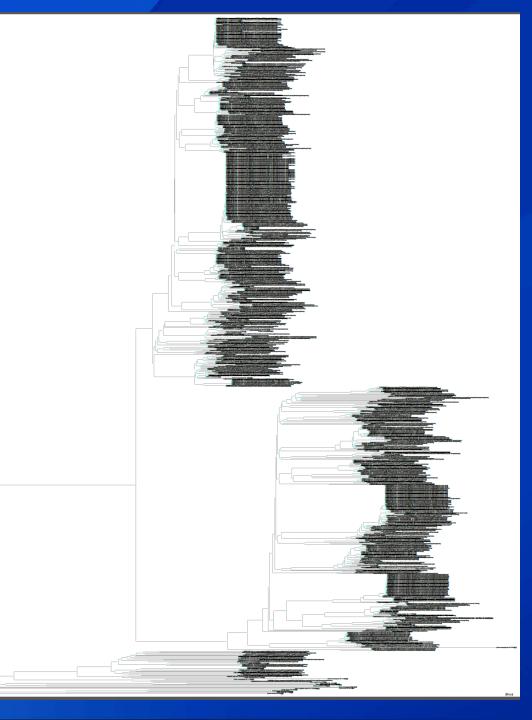
Understanding WGS Data Analysis: Phylogenetic Trees

- Branch length indicates relatedness, shorter horizontal branch length = highly related (isolates in red node 1); longer branch length = less related (yellow node 3)
- Branch length is affected by # of isolates you are comparing as well as relatedness
- Where branches join is referred to as a node, the node indicates a common ancestor (blue node 2), could indicate common transmission source


Kmer Tree

Environmental and food samples that FDA collected at Crave Bros., 2010-2013

Clinical, Crave Bros. 2013


Implicated food, Crave Bros., 2013

New clinical isolates sequenced after closing out the Crave Bros. outbreak

 As more isolates added to the tree it becomes more difficult to identify clusters

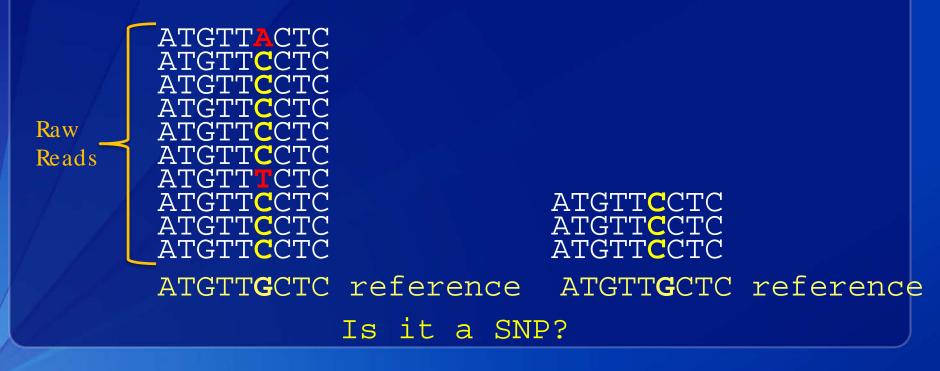
Caveats to K-mer analysis

Advantages:

Does not require a reference or multiple sequence alignment
 Relatively fast analysis
 Does not require assembly

Disadvantages:

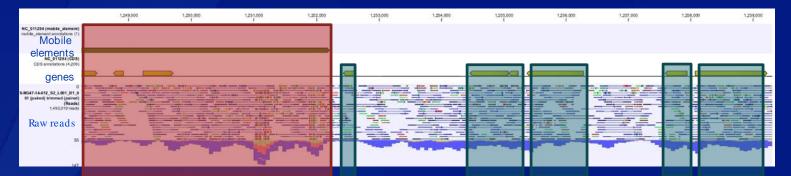
- K-mer analysis does not provide information about where in the genome the differences are
- Does not consider sequence quality*
- Does not provide a true phylogenetic relationship
- Does not lead to strain type nomenclature


SNP Analysis Terms

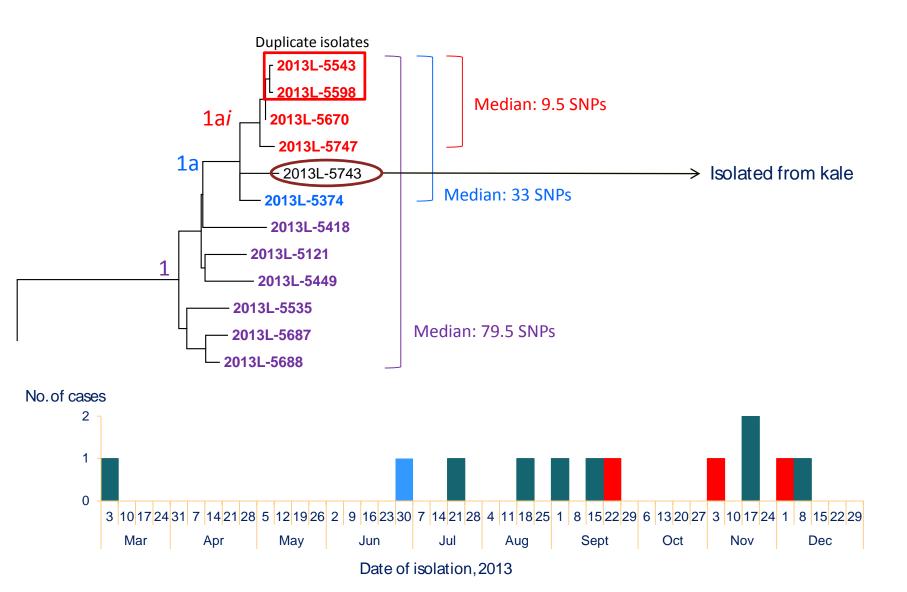
 Single Nucleotide Polymorphism (SNP) ATGTTCCTC sequence ATGTTGCTC reference *phylogentically informative differences
 Insertion or Deletion (Indel) ATGTTCCCTC sequence ATGTTC-CTC reference *differences not used in hqSNP analysis

Ways to perform SNP Analysis

Reference-based SNP calling


- High quality SNP (hqSNP)
- Raw reads are mapped to a highly related reference
- Called based on coverage and read frequency at SNP location
- Shows the phylogenetic relationship

Where to call SNPs


Focusing on different parts of the genome will give you different SNP counts

 Can look at SNPs in whole genome, in core genes only, or even mask part of the genome and not consider any SNPs found there.

Mask mobile elements -do no consider SNPs in this location Only call SNPs in genes

Cluster 1 (1312MLGX6-1): Discriminatory Power

Caveats to hqSNP Analysis

Advantages:

- Phylogenetically informative
- SNP position can be identified on genome to determine what gene or intragenic region contains the SNP

Disadvantages:

- Requires a closed reference or good draft genome
 - Recent closed references from all serotypes are not available

Computationally costly

- Requires multiple sequence alignment to a reference
- Does not lead to strain type nomenclature

Mutational hotspots, due to recombination or mobile elements, can make SNP counts artificially high

Whole Genome MLST (wgMLST)

- Compare gene content between different isolates (can compare over 5000 genes in *Listeria*)
- 1 or more differences (SNP or indel) equal to a new allele name
- Can categorize genes into subgroups: virulence profiles, serotypes, antimicrobial resistance determinants, housekeeping gene MLST, ribosomal MLST, core genome MLST, etc.
- Software like BIGSdb and BioNumerics 7.5 can run these analyses

Locus 1

ACTAGAGGGAAA allele 1 ACTAGAGGCTAA allele 2

ACT-GAGGGTAA allele 3

wgMLST Tree

	🔛 wg	MLST																	
waMLST	LM0_1	LM0_2	LM0_3	LMO_4	LM0_5	LMO_6	LM0_7	LMO_8	6 OMJ	LMO_10	LMO_11	LMO_12	LMO_13	LMO_14	LM0_15	LMO_16	LM0_17		
97 98 99 100	2	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5		Outbreak
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1	 Image: A start of the start of	1312MLGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1	 Image: A start of the start of	1312MLGX6-1
	11	1		17	9	2	10	24	10	16	13	19	20	15	1	10	1	 Image: A start of the start of	1312MLGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1	 Image: A set of the set of the	1312MLGX6-1
	11	1		17	9	2	10	14	5	8	13	3	4	5	1	10	1	 Image: A set of the set of the	1312MLGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1		1312MLGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1	 Image: A set of the set of the	1312MLGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1	 Image: A set of the set of the	1312MLGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1		1312MLGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1	 Image: A start of the start of	1312MLGX6-1
1	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1		1307MNGX6-1
l l	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1		1307MNGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1		1307MNGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1	 Image: A set of the set of the	1307MNGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1	 Image: A set of the set of the	1307MNGX6-1
ר <u>ן</u> ו	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1	 Image: A set of the set of the	1307MNGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1	 Image: A set of the set of the	1307MNGX6-1
	11	1		17	9	2	10	14	10	16	13	19	20	15	1	10	1	 Image: A start of the start of	1307MNGX6-1
	11	1		17	9	2	10	14	5	8	13	3	4	5	1	10	1	 Image: A start of the start of	1307MNGX6-1

*wgMLST tree made for Crave Bros and 1312MLGX6-1 cluster highlighting what the dendrogram looks like and the different allele calls

Caveats to wgMLST Analysis

Advantages:

- Phylogenetically informative
- All subtyping genes, virulence genes, and antibiotic resistance genes are pulled out as part of the analysis
- Can create a standardized nomenclature based on allele calls

Disadvantages:

- Computationally costly to initially assign alleles
- Comparing character data, not actual sequence data
 - SNPs and indels treated equally
 - No difference between 1 or more SNP or indel differences in naming an allele

Caveats for WGS Analysis

Opportunities

- Universal high resolution subtyping method
- All information currently obtained by traditional methods contained in the sequence data
 - Can use to identify serotype, virulence genes, resistance genes, etc
 - Huge savings opportunity by replacing traditional methods with NGS

Challenges

- Large amounts of data presents storage and analysis issues
- Currently no standardization for quality metrics or analysis pipelines
- Backwards comparability of WGS data with PFGE difficult to establish
- Interpretation of data how to define clusters?

Comparison between NGS platforms for *Listeria* project

- Selected 22 isolates of *Listeria* from different serotypes, sporadic and outbreak isolates
- Sequenced the same 22 isolates on the Ion Torrent PGM and Illumina MiSeq
- Determined variability in assembly metrics, hqSNP calls, and allele calls for wgMLST

Findings

Factor	MiSeq	PGM				
Coverage	128 (58x-266x)	47x (21x-73x)				
Contigs per assembly	22 (assembled using CLC)	28 (assembled using MIRA)				
N50	391,927	306,604				
hq S NP calls	0-2 differences					
wgMLST loci detected	16 more identified by MiSeq					
wgMLST allele call diferences	0-2 discrepancies					

Platform Comparison Discussion

- Preliminary analysis suggests data generated from the 2 platforms is compatible to use in surveillance and outbreak detection
- Additional comparisons are being done looking at Salmonella and Escherichia colidata compatibility between the 2 platforms
- Determine if loci with missing allele calls from PGM data are important for outbreak detection
- Use Sanger sequencing to determine which platform made the correct base call where there were discrepancies

Vision for Implementation of WGS into PulseNet and Enteric Reference Activities

Advanced Molecular Detection (AMD)

- 5 year initiative
- FY2014 funding: \$30 million
 - Most will stay at CDC
 - Limited reagent support for the labs that already have Illumina Miseq
 - Sequence all STEC, selected Campy and Salmonella
- FY2015 projected funding: \$30 million
 - Increasing support for PHLs in transitioning to WGS
- By the end of 2018, every PulseNet lab will sequence all foodborne isolates received replacing all current conventional workflows
 - Will be used for strain identification, serotyping, pathotyping, virulence characterization, AR monitoring, PulseNet subtyping

Vision for Implementation of WGS into PulseNet

Sequence data analysis within the AMD initiative

- wgMLST using the BioNumerics 7.5 as a primary surveillance tool
 - User friendly workflows
 - No need for specific bioinformatic expertise
 - Raw data storage at NCBI
 - Allele calls and metadata stored in sql-database at a CDC server
- First pilot testing with selected labs in spring 2015
- If funds available, the whole PulseNet network upgraded to BN 7.5 at the same time

Role of CDC Laboratories In The World of WGS

- Data management & data analysis
- Surge capacity for WGS
- WGSTroubleshooting
- National organism specific subject matter expertise
- 'Center for Classical Microbiology'
 - When WGS fails or new strains emerge
 - Sentinel surveillance using classical methods
- More integration of laboratory and epidemiology
 - Laboratory expertise is needed to use and interpret the data in epidemiological contexts

Questions?

For more information please contact Centers for Disease Control and Prevention PulseNet/CDC 1600 Clifton Road NE, Atlanta, GA 30333

E-mail: pfge@cdc.gov Web: http://www.cdc.gov/pulsenet

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

National Center for Emerging and Zoonotic Infectious Diseases Division of Foodborne, Waterborne, and Environmental Diseases

• Resources:

Program	What for?	Where to find it	Cost?	Platform
BioNumerics 7.5	Assembly, wg MLST, SNP analysis	http://www.applied- maths.com/	Yes	Windows
CLC Bio Genomics Workbench	Workflows, read metrics, assemblies, etc, SNP analyses	http://www.clcbio.com/produ cts/clc-genomics-workbench/	Yes	Windows/ Linux
Geneious	Assemblies, trees, SNP analysis	http://geneious.com/	Yes	Windows
MEGA5	Phylogenies	megasoftware.net/	No	Windows
Lasergene	Assemblies, read metrics, analysis	http://www.dnastar.com/	Yes	Windows
Genome Workbench	Viewing trees, analysis	http://www.ncbi.nlm.nih.gov/ tools/gbench/	No	Windows/ Linux
CG-Pipeline	Assembly, read metrics, assembly metrics, read cleaning, etc	sourceforge.net/projects/cg- pipeline	No	Linux
Snp Extraction Tool	Creating Phylogenies	github.com/lskatz/lyve-SET	No	Linux

* List of some analysis tools for WGS data