The Nuts and Bolts of Proteomics in Microbiology, MALDI-TOF in Microbiology

Nathan A Ledeboer Associate Professor of Pathology Medical College of Wisconsin

Medical Director, Microbiology and Molecular Pathology Dynacare Laboratories and Froedtert Hospital

Medical Director, Laboratory Outreach, Logistics, Client Services and Reference Services Dynacare Laboratories Milwaukee, WI

Financial Disclosures

- Consultant
 - Nanosphere
 - ThermoFisher Scientific
 - LabCorp
 - iCubate
 - Copan Diagnostics
 - BD Diagnostics
- Board Member
 - Evogen
- Honoraria
 - Bruker Daltonics
- Research Grants
 - Meridian, Quidel, IMDx, Cepheid, BD, bioMérieux, Bruker Daltonics, Nanosphere, Seegene, Life Technologies, Prodesse, Great Basin Corp, iCubate, Biohelix, BioRad
- Will discuss applications/products that are not FDA approved

Outline

- Introduction to MALDI-TOF
- Performance of MALDI on Bacteria and Yeast
- Performance improvement on turnaround
- Performance improvement on rare isolates
- Future of Mass Spectrometry in Clinical Microbiology

Bruker Biotyper or Vitek MS

Both systems are FDA approved, but approved databases are different and continue to change.

Additional suggestions for MALDI-TOF MS sample preparations for use with different classes of microbes.

Clark A E et al. Clin. Microbiol. Rev. 2013;26:547-603

The Process of Mass Spectrometry

Biotyper: Results output

Raw profile spectrum

Refined profile spectrum

Results are analyzed by a computer, cleaned-up and the spectrum is searched against a database with known spectra.

MALDI identification result

Rank (Quality)	Matched Pattern	Score Value	NCBI Identifier		
1 (++)	Staphylococcus aureus ssp aureus DSM 3463 DSM	2.194	<u>46170</u>		
2 (++)	Staphylococcus aureus ATCC 33862 THL	2.121	<u>1280</u>		
3 (+)	Staphylococcus aureus ssp aureus DSM 4910 DSM	1.974	<u>46170</u>		
4 (+)	Staphylococcus aureus ssp aureus DSM 20491 DSM	1.887	46170		
5 (+)	Staphylococcus aureus ssp aureus DSM 11822 DSM	1.843	<u>46170</u>		
6 (+)	Staphylococcus aureus ATCC 29213 THL	1.787	<u>1280</u>		
7 (+)	Staphylococcus aureus ssp aureus DSM 346 DSM	1.765	46170		
8 (+)	Staphylococcus aureus ATCC 33591 THL	1.745	<u>1280</u>		
9 (-)	Staphylococcus aureus ATCC 25923 THL	1.688	<u>1280</u>		
10 (-)	Staphylococcus aureus ssp aureus DSM 20652 DSM	1.528	<u>46170</u>		

- **1.**0-3.00 Secure genus and species identification
- Probable genus identification 1.7-1.99

0.0-1.69 Unreliable identification

Vitek MS Binning

MEDICAL COLLEGE PHYSICIANS

Slide Curtsey of Bert Top

Vitek MS Binning

Slide Curtsey of Bert Top

Bacteriology and Yeast

In a study by Benagli *et al.,* the authors compared performance of MALDI-TOF to biochemical ID and resolved discrepancies with sequencing. The results follow.

Benagli C et al. PLoS One. 6(1).

Jamal, J Medical Microbiology (2013)

Genus and species ID by API 20AN	No. (%) of isolates		Bruke	VITEK MS			
-		No. with score <1.7	No. with score 1.7–1.999	No. with score 2–2.299	No. with score ≥3.00	No. with score <85	No. with score 85–90
Bacteroides fragilis	113 (41.2)	1	2	34	76	0	113
Bacteroides ovatus	8 (2.9)	1	1	4	2	0	8
Bacteroides thetaiotaomicron	15 (5.5)	1	0	13	1	0	15
Bacteroides uniformis	5 (1.8)	0	0	3	2	0	5
Bacteroides vulgatus	10 (3.6)	1	2	7	0	0	10
Clostridium butyricum	1 (0.4)	0	0	1	0	0	1
Clostridium difficile	70 (25.5)	1	10	51	8	0	70
Clostridium histolyticum	2 (0.7)	0	2	0	0	0	2
Clostridium perfringens	14 (5.1)	0	2	1	11	0	2
Clostridium sporogenes	1 (0.4)	1	0	0	0	0	1
Prevotella bivia	31 (11.3)	1	3	16	11	0	31
Prevotella disiens	1 (0.4)	0	0	1	0	0	1
Peptostreptococcus asaccharolyticus	2 (0.7)	1	0	1	0	0	2
Veillonella parvula	1 (0.4)	0	0	1	0	0	1
Total no. (%)	274	8 (2.9)	22 (8)	133 (48.5)	111 (40.5)	0	274 (100)

	No. (%) of isolates				
		Identified correctly	Identified correctly		
Organism	Total	to genus	to species	Unidentified	Misidentified
Candida albicans	58	57 (98.3)	57 (98.3)	0 (0)	$1(1.7)^{a}$
Candida dubliniensis	34	34 (100)	34 (100)	0 (0)	0 (0)
Candida famata	29	29 (100)	28 (96.6)	0 (0)	0 (0)
Candida glabrata	62	62 (100)	62 (100)	0 (0)	0 (0)
Candida guilliermondii	36	35 (97.2)	35 (97.2)	1 (2.8)	0 (0)
Candida haemulonii	12	12 (100)	12 (100)	0 (0)	0 (0)
Candida inconspicua	23	23 (100)	23 (100)	0 (0)	0 (0)
Candida intermedia	7	7 (100)	7 (100)	0 (0)	0 (0)
Candida kefyr	30	30 (100)	30 (100)	0 (0)	0 (0)
Candida krusei	53	53 (100)	53 (100)	0 (0)	0 (0)
Candida lambica	9	9 (100)	9 (100)	0 (0)	0 (0)
Candida lipolytica	28	28 (100)	28 (100)	0 (0)	0 (0)
Candida lusitaniae	33	30 (90.9)	29 (87.9)	3 (9.1)	0 (0)
Candida norvegensis	30	29 (96.7)	29 (96.7)	1 (3.3)	0 (0)
Candida parapsilosis	73	72 (98.6)	72 (98.6)	0 (0)	$1 (1.4)^b$
Candida pelliculosa	33	33 (100)	33 (100)	0 (0)	0 (0)
Candida rugosa	6	6 (100)	6 (100)	0 (0)	0 (0)
Candida tropicalis	54	51 (94.4)	49 (90.7)	3 (5.6)	0 (0)
Candida utilis	8	8 (100)	8 (100)	0 (0)	0 (0)
Candida zeylanoides	8	8 (100)	8 (100)	0 (0)	0 (0)
Total	626	616 (98.4)	612 (97.8)	8 (1.3)	2 (0.3)

TABLE 1 Performance characteristics of the Vitek MS system in identifying clinically relevant Candida species

^a Isolate misidentified as C. dubliniensis.

^b Isolate misidentified as C. pelliculosa.

MEDICAL COLLEGE PHYSICIANS

Westblade et al. JCM 2013. 51: 2267-2272 – Kindly provided by C.A. Burnham

Biotyper and Vitek MS for Yeast

- Candida
 - Vitek MS: 87.3% species level identification, 3.8% no identification, 2.5% misidentification
 - Bruker Biotyper: 92.3% species level identification,
 6.4% no identification, 0% misidentification
- Non-Candida isolates
 - Vitek MS: 72.5% species level identification, 2.5% no identification, 12.5% misidentification
 - Bruker Biotyper: 80% species level identification, 20% no identification, 0% misidentification
- Overall, the rate of correct identification to species level was comparable between the two systems

Time course of the numbers of total isolates misidentified using phenotypic identification (PID*), isolates confirmed by a second PID* and isolates confirmed by molecular identification (ID**) over 11 years of routine identification in our clinical laboratory.

Seng P et al. J. Clin. Microbiol. 2013;51:2182-2194

n° of isolates

Time course of the numbers of isolates of 128 rare species, 48 of which were identified using phenotypic identification (PID), and 75 of which were identified using molecular identification (ID).

Seng P et al. J. Clin. Microbiol. 2013;51:2182-2194

Turnaround

		Mean # of days isolate	Proportion identified earlier by MALDI-protocol,								
Organism-group	n	identified earlier	by number of days of workup								
			<0d ^a	0d ^b	1d	2d	3d	4d	5d	6d	>6d
		(days)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
S. aureus	109	1.35		1.8	66.1	28.4	2.8	0.9			
Other Staph ^c	26	1.19		7.7	65.4	26.9					
BHS⁴	72	0.60	1.4	38.9	58.3	1.4					
VGS ^e	7	0.57		42.9	57.1						
S. anginosus	17	1.12		41.2	29.4	5.9	23.5				
S. pneumoniae	6	0.33		66.7	33.3						
Other GPC ^f	6	3.33		33.3	16.7	16.7				16.7	16.7
Enterococcus sp.	78	1.64		1.3	51.3	34.6	9.0	2.6	1.3		
Enterobacteriaceae	284	1.34		2.8	69.4	23.2	2.1	1.1	1.1	0.4	
P. aeruginosa	77	1.82			41.6	49.4	2.6	1.3	2.6	2.6	
Other NF GNB ^g	39	2.59		2.6	30.8	35.9	2.6	15.4	5.1	5.1	2.6
Haemophilus sp.	10	1.40			80.0		20.0				
Other GNCB ^h	7	0.14		85.7	14.3						
Corynebacterium sp.	9	1.67		22.2	33.3	22.2		22.2			
Other GPR ⁱ	8	4.13	12.5		37.5			12.5			37.5
Anaerobic GN ^j	26	2.54		3.8		65.4	7.7	19.2		3.8	
Anaerobic GP ^k	14	2.64		21.4	14.3	28.6	7.1	7.1		14.3	7.1
C. albicans	52	0.04	3.8	92.3	1.9		1.9				
Other Candida sp.	56	1.93		8.9	67.9	7.1	3.6	3.6	3.6		5.4
Other yeasts	8	3.75				25.0	37.5	12.5		12.5	12.5
All organisms	911	1.45	0.4	13.5	52.7	23.6	3.7	2.7	1.1	1.1	1.1

Cost-effectivenesss of switching to MALDI-TOF MS for routine bacterial identification

September 2009

- Switched from conventional biochemicals (Vitek 2 and API) to MALDI-TOF MS (Bruker)
- Cost analysis performed

Annual Savings = \$177, 090 "allowed decrease of 89.3% of the cost of bacterial identification in the first year." In addition: Decreased waste from 1,424kg to 44kg Decreased subculture media of \$1,102 Decreased sequencing cost of \$1,650

	October 2008- September 2009	October 2009- September 2010
Isolates Tested	33,320	38,624
Biochemical Costs	\$193,754	\$5,374
MALDI-TOF	-	\$15,836
TOTAL	\$193,754	\$21, 210
Avg Cost/ID	\$5.81	\$.54

Galliot O, et al. JCM

What about Susceptibility Testing?

Table 1. Previous studies investigating MRSA and MSSA associated peaks by mass spectrometry.						
Study	Sample number	Sample preparation	Peak evaluation	MRSA falsely identified	Peaks associated with MRSA (Da)	Peaks associated with MSSA (Da)
Edward-Jones et al	14	Formic acid	Presence of peaks	NA	511, 563, 640,743,767, 773, 854, 891, 999, 1026, 1140, 1165, 1229, 2127	2548.2647
Du et al	76	None	Presence of peaks	7 out of 43	1834, 1874, 2413, 2453, 2490	2093, 2308, 2345, 2547, 2585, 2686, 2723
Shah et al	99	Lysis by urea, Lysostaphin, mechanical disruption	Peak intensity	26 out of 50	5709, 7694, 15, 308, 18, 896	3081, 5893, 9580
Majcherczyk et al	4	None	Presence of peaks	NA	peaks around 2450	NA
Sun et al	34	NA	NA	None	NA	NA

Szabados F. at al. 2012. Identical MALDI TOF MS-derived peak profiles in a pair of isogenic SCCmec-harboring and SCCmec-lacking strains of Staphylococcus aureus. J Infection. 65: 400-405.

Szabados F. at al. 2012. Identical MALDI TOF MS-derived peak profiles in a pair of isogenic SCCmec-harboring and SCCmec-lacking strains of Staphylococcus aureus. J Infection. 65: 400-405.

Conversion of Ampicillin by E.coli

IS

MS-RESIST

Resistance detection through stable isotopes

Slide Courtesy of M. Kostrzewa

MS-ASTRA

MALDI-TOF MS as quantitative growth monitor

MS-ASTRA pseudo gel view

Susceptible

Resistant

Conclusions

- Data demonstrates excellent performance of MALDI-TOF MS for identification of bacteria and yeast
 - Current IVD indications are limited, but RUO databases are comprehensive and IVD continues to expand
- High Capital Cost can be overcome by consumable savings and turnaround improvement
- Susceptibility testing methods being developed.
- MALDI-TOF and current technologies represent the beginning of protein revolution

