### From the Laboratory Towards the Patient: Nucleic Acid Amplification-Based Diagnostics at the Point of Care

David Boyle PATH Seattle June 4<sup>th</sup> 2014 APHL Meeting





## What is the Definition of POC Testing?

"Tests designed to be used at or near the site where the patient is located, that do not require permanent dedicated space, and that are performed outside the physical facilities of the clinical laboratories."

College of American Pathologists

"Testing at or near the site of patient care whenever the medical care is needed."

Louie et al. 2000. Laboratory Medicine, 31 (7)

"A test that anyone can use by themselves in any setting, any ambulatory setting."

Ron Zwanziger, CEO, Alere



# **Critical View of NAAT Testing in LRS**

"It is worth noting that there are no successfully marketed genuine POC nucleic acid tests anywhere in the world (for TB or other infectious diseases)"

Batz et al. 2011. Towards Lab-Free Tuberculosis Diagnosis. A Report by TAG, the TB/HIV Working Group of the Stop TB Partnership, Imperial College and the MSF Access Campaign.





## **Benefits of NAAT as a Diagnostic Tool**


- 1. Greater performance over traditional Dx tests
- 2. More rapid time to result
- 3. Capacity to multiplex tests
- 4. Reduced user training/skill
- 5. Move Dx closer to the patient population in LRS



# Potential Disadvantages of NAAT as a Diagnostic Tool

- 1. Cost
- 2. Stability/robustness of tests/equipment
- 3. Adequate training
- 4. EQA and QC
- 5. Adequate supply/cold chain of materials/reagents
- 6. Maintenance
- 7. Dissemination of test results



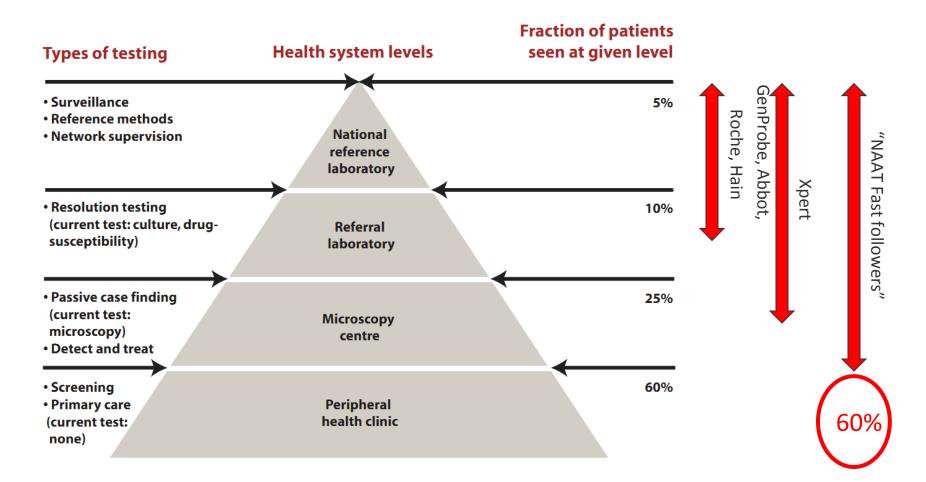




## "ASSURED"-The Accepted Norm(?)

The key components for a successful LRS Dx tool via ASSURED

|                          | RDT          | NAAT         |
|--------------------------|--------------|--------------|
| Affordable               | <b>√</b> *   | Х            |
| Sensitive                | <b>√</b> *   | $\checkmark$ |
| Specific                 | <b>√</b> *   | $\checkmark$ |
| User-friendly            | <b>√</b> *   | √/?          |
| Rapid and robust         | $\checkmark$ | √/?          |
| Equipment-free           | $\checkmark$ | Х            |
| Deliverable to end-users | ✓ *          | X/?          |

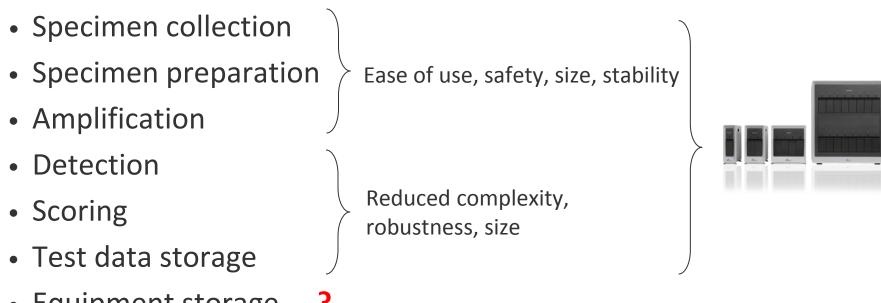

 "Poor testing procedure in the field can lead to exceedingly low levels of rapid HIV test sensitivity."

Wolpaw B. et al. BMC Health Service Res. 2010 10:73



## Where Are NAATs Currently Performed?

Currently commercial NAATs are laboratory-based for TB and HIV The GeneXpert is the first NAAT TB Dx outside of the large laboratory




Source: World Health Organization. 2006. Diagnostics for tuberculosis: Global demand and market potential.

♣PATH

## What Are The Primary Obstacles for POC NAAT?

For an NAAT to be effective in low-resource settings, the following areas need to be addressed:



Equipment storage

Ideally these can be in a fully integrated device BUT costs and intended use case scenario do not dictate this to be essential

## **Specimen Collection**

- An inadequate specimen negates a test result regardless of downstream technology
- The pathogen/symptoms dictate the specimen type
- Many specimens types exist:
   POC
  - Highly invasive: Amniotic fluid or CSF
  - Invasive: Whole blood (phlebotomy)/bronchial lavage  $\times/\checkmark$
  - Minimally invasive: Finger\*/heel stick/Nasal swab\*
  - Noninvasive: Urine\*/Stool/Sputum\*

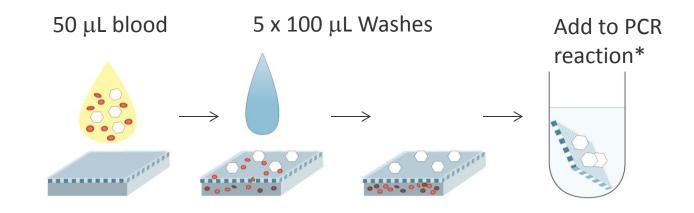
\* Even "simple" specimen collection can require trained users



X

#### **Specimen Preparation**

To release nucleic acids, remove confounding substances, and concentrate target analyte


• Enzyme, chemical, physical or typically a combo

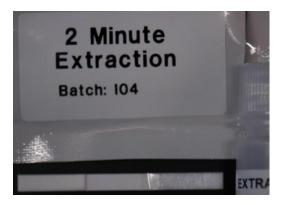
Several key obstacles:

- Pathogen physiology: Spores, cell wall, capsular
- Confounding substances: Stool, sputum, blood
- Low pathogen load: HIV, typhoid, MTB
- Stability of analyte: RNA

### To Purify NA Or Not?

#### Some POC tests do not need "clean" NA

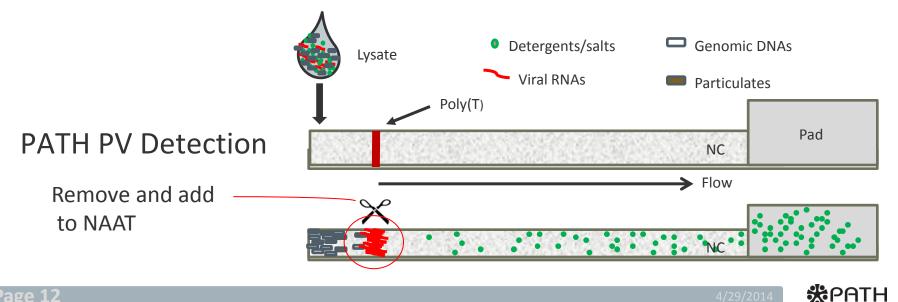



#### \*NOTE: This may be integrated with any NAAT technology





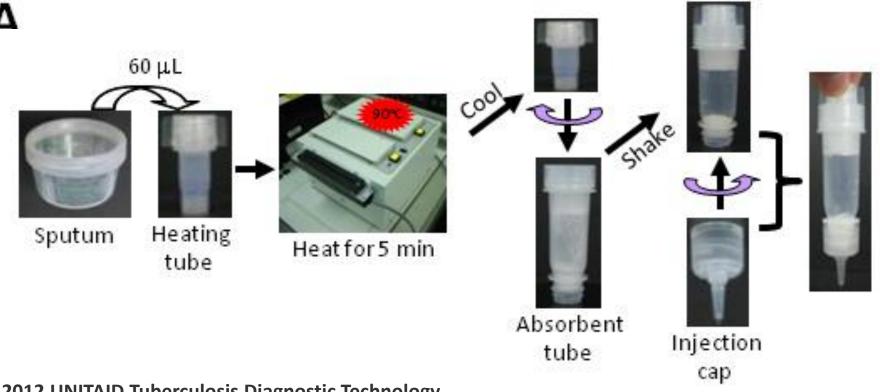



## Target Capture by (Very) Basic Chromatography



Rapid sample preparation for detection of a fungal pathogen by LAMP Tomlinson et al., Plant Pathology (2010) 59

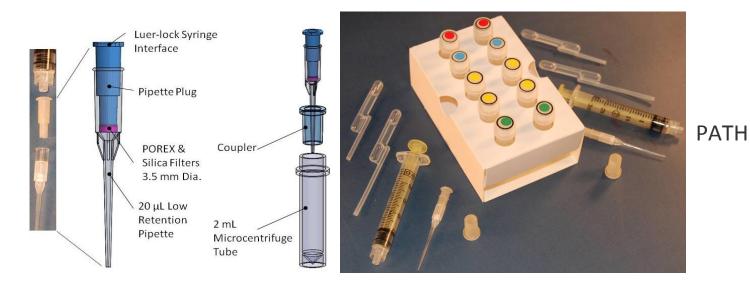
Malaria RDTs being used to capture and enrich for malarial DNA prior to real-time PCR.


Cnops et al., Malaria Journal (2011) 10,67

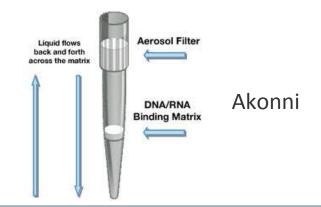


## Removal of Inhibitory Compounds

The Eiken/FIND Loopamp® TB assay


Sample lysis and removal of inhibitors rather than concentration of DNA

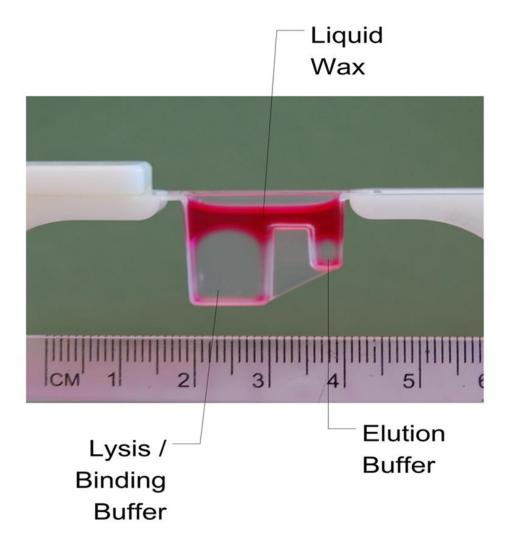



2012 UNITAID Tuberculosis Diagnostic Technology Landscape Semi-annual Update November 2012

## Simplified SP Extraction

- Boom chemistry to purify/concentrate NA on silica membranes
- Non instrumented








Page 14

**%**PATH

## Surface Tension Valves: The iFAST



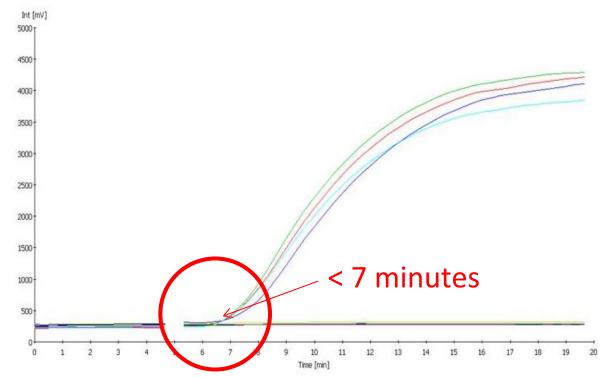
Similar performance to columns BUT Small Based on well established tech Much faster No need for centrifuge No need for wash buffers Integrated Licensed to Quidel

Source: Sur K. et al. J Mol. Diagn. 2010 12(5)

\*PATH

## **Amplification Technologies**

PCR-based methods have led the way: HAI and respiratory pathogens: FDA approved >12 PCR, 2 HDA, and 1 LAMP


Fully to partially integrated with sample preparation

Highly multiplexedBiofire, ApolloModerateGeneXpert, ICubate, Enigma ML, othersLowBD Max, Genedrive, Uno



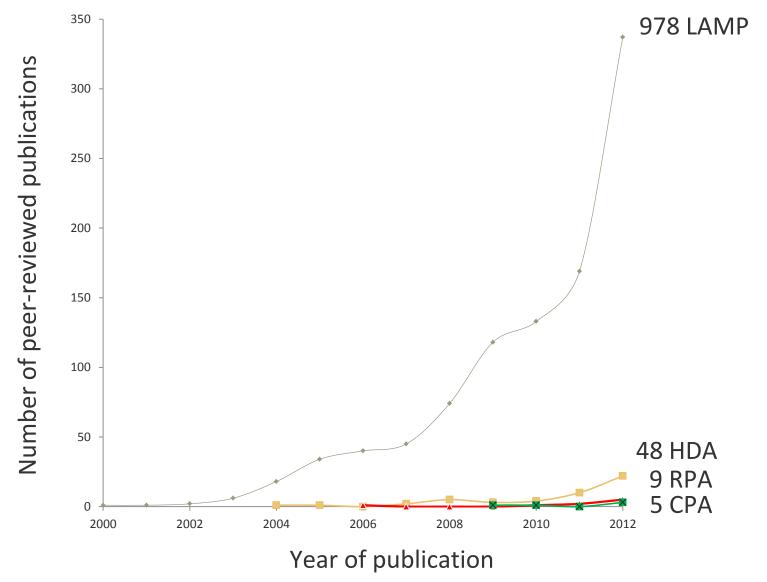
## Advantages Offered by Isothermal Amplification

- Greater tolerance to inhibitory compounds
- Faster time to result



Source: Boyle DS et al. 2013 mBio

ℜPATH


## 2011 Review of Isothermal Methods

| Assay            | Reaction<br>temperature (°C) <sup>a</sup> | Reaction<br>duration (min) <sup>a</sup> | Multiplex <sup>b</sup> | Rapid detection<br>formats <sup>c</sup> | Target           | Amplification<br>product |
|------------------|-------------------------------------------|-----------------------------------------|------------------------|-----------------------------------------|------------------|--------------------------|
| Methods based of | on RNA transcription                      |                                         |                        |                                         |                  |                          |
| NASBA            | 41 <sup>d</sup>                           | 105                                     | Υ                      | RTF, NALF                               | RNA (DNA)        | RNA, DNA                 |
| TMA              | 60 <sup>d</sup>                           | 140                                     | Y                      | RTF                                     | RNA (DNA)        | RNA, DNA                 |
| SMART            | 41 <sup>d</sup>                           | 180                                     | N/A                    | RTF                                     | RNA, DNA         | RNA                      |
| Methods based of | on DNA replication with                   | n enzymatic duplex n                    | nelting/primer a       | nnealing                                |                  |                          |
| HDA              | 65                                        | 75-90                                   | Y                      | RTF, NALF                               | DNA <sup>e</sup> | DNA                      |
| RPA              | 30-42                                     | 20                                      | Y                      | RTF, NALF                               | DNA <sup>e</sup> | DNA                      |
| Methods based of | on DNA-polymerase-me                      | ediated strand displa                   | cement from lin        | ear or circular targets                 |                  |                          |
| LAMP             | 60-65 <sup>d</sup>                        | 60-90                                   | N/A                    | RTF, NALF, RTT, TE                      | DNA <sup>e</sup> | DNA                      |
| CPA              | 65                                        | 60                                      | N/A                    | RTF, NALF                               | DNA              | DNA                      |
| SMART-AMP        | 60                                        | 45                                      | N/A                    | RTF                                     | DNA <sup>e</sup> | DNA                      |
| RCA              | 65                                        | 60                                      | N/A                    | RTF                                     | DNA <sup>e</sup> | DNA                      |
| RAM              | 63 <sup>d</sup>                           | 120-180                                 | N/A                    | RTF                                     | DNA <sup>e</sup> | DNA                      |
| Methods based of | on polymerase extensio                    | n/strand displaceme                     | nt, plus a single      | strand cutting event                    |                  |                          |
| SDA              | 37                                        | 120                                     | Y                      | RTF, NALF                               | DNA <sup>e</sup> | DNA                      |
| NEAR             | 55                                        | 10                                      | Y                      | RTF, NALF                               | DNA <sup>e</sup> | DNA                      |
| NEMA             | 65                                        | 30                                      | N/A                    | NALF                                    | DNA              | DNA                      |
| ICA              | 60                                        | 60                                      | N/A                    | RTF                                     | DNA              | DNA                      |
| EXPAR            | 55                                        | 10-20                                   | Y                      | RTF, NALF                               | DNA              | DNA                      |
| BAD AMP          | 40                                        | 40                                      | N/A                    | RTF                                     | DNA              | DNA                      |
| PG-RCA           | 60                                        | 60-120                                  | N/A                    | RTF                                     | DNA              | DNA                      |

Niemz et al., 2011 TiBtech, 29(5)

At least 5 more as of 2013...

## The Evolution of Selected Isothermal Methods



## Improving Performance via Novel Enzymology

For improved performance of PCR:

New sources of DNA polymerases Mutational modifications of Taq (e.g. KlenTaq1) Phage-based enzymes (e.g. Pyrophage)

The same is now happening with strand displacing DNA polymerases:

NEB Bst v2.0, Lucigen pyrophage, and Optigene GspF, M, SSD, and E

Like Tth, some Bst-like enzymes have reverse transcriptase activity

## **Novel Polymerases: DNA Amplification**

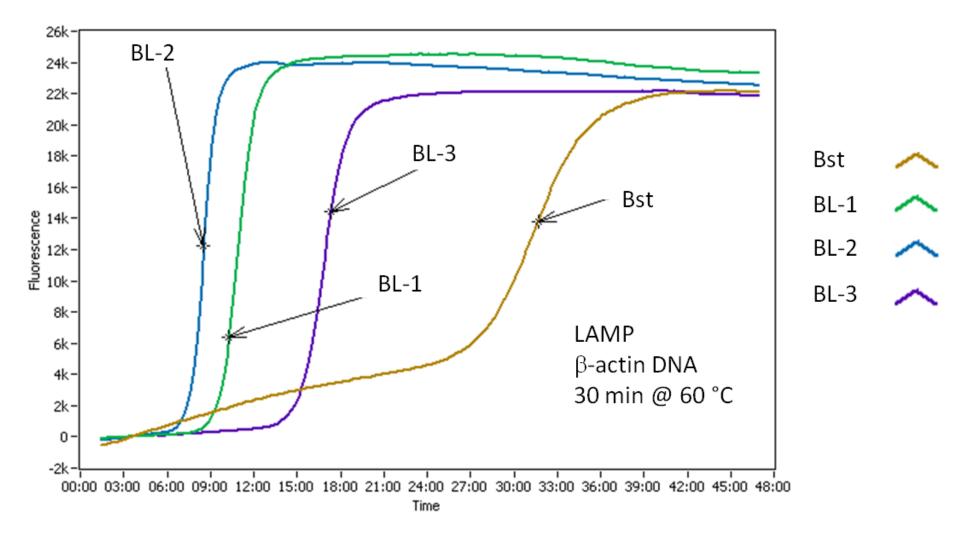
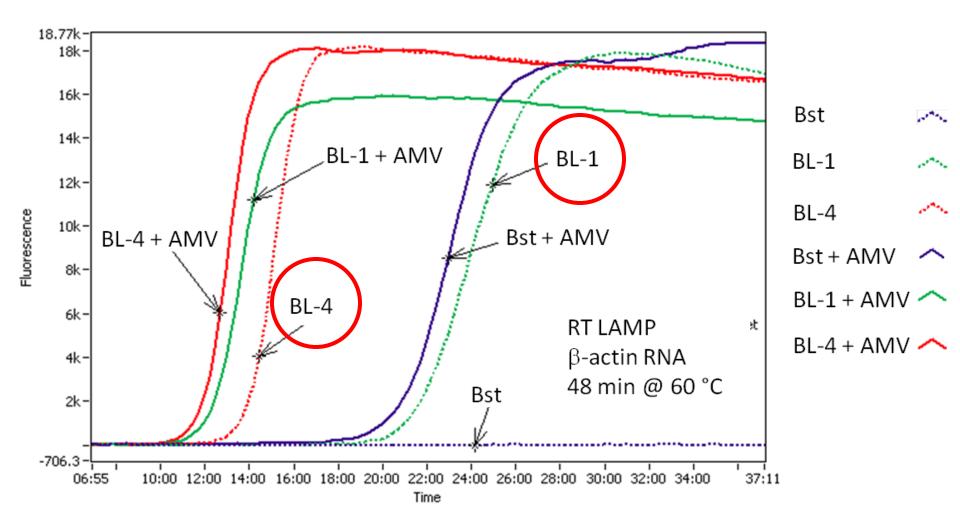




Image courtesy of Optigene (UK)

Page 21

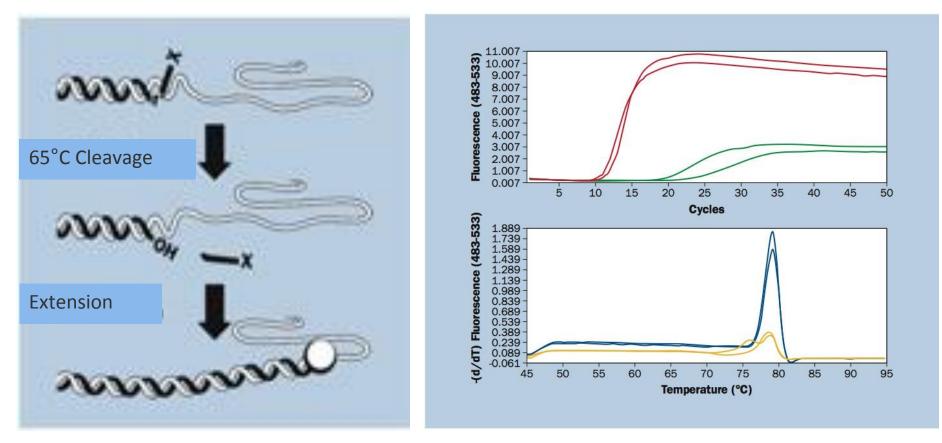
## **Novel Polymerases: RNA Amplification**



#### Image courtesy of Optigene (UK)

Page 22

**%**РАТН


# Improved Oligonucleotide Chemistry

Chemical modifications to oligonucleotides improves test performance:

- 1. The minor groove binder MGB Higher fidelity, yet shorter Taqman probes
- 2. Locked nucleic acids
  Super bases
  Peptide nucleic acids
- 3. Spermidylated primers/probe (zipDNAs)
- 4. Blocked primer/probe technology (e.g. bpHDA and RPA)
- 5. Dual Priming Oligonucleotides (DPO)

## **Chemistry and Enzymology**

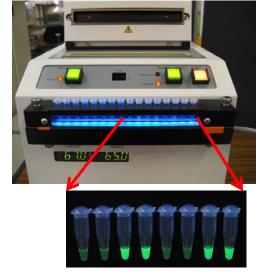
Blocked primer HDA - Developed by Great Basin Corp. (Utah) Thermostable RNase H2 and *Bst* polymerase



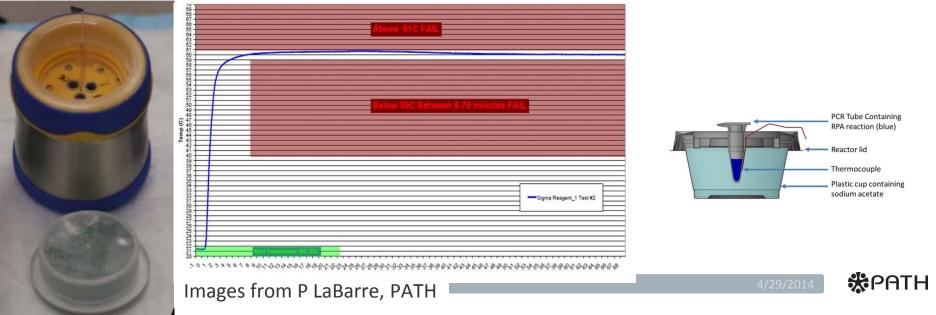
#### Rea et al., 2012, IVD Technology

Page 24




## **Reaction Incubation and Detection of Amplicons**

Isothermal reactions:


Dedicated platform heating with visual detection (turbidity, Calcein, Hydroxyl napthol blue

OR

#### Non instrumented Heater (NINA)

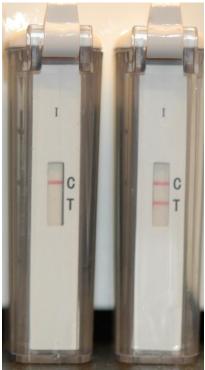


Images from C. Boehme, FIND



## Or No Heater!!!

#### Non-Instrumented Incubation of Recombinase Polymerase Amplification for the Sensitive and Rapid Detection of HIV Infection in Low Resource Settings...


| Temp (°C) |          | Therm | ocycler  |           |          | Ambient 1 | Temperature |       |
|-----------|----------|-------|----------|-----------|----------|-----------|-------------|-------|
|           | <u>H</u> | IV    | <u>N</u> | <u>TC</u> | <u>H</u> | IV        | <u>NTC</u>  |       |
|           | 20'      | 30'   | 20'      | 30'       | 20'      | 30'       | 20'         | 30'   |
| 29        | 1/3      | 3/3   | 0/1      | 0/1       | 0/3      | 2/3       | 0/1         | 0/1   |
| 30        | 2/3      | 3/3   | 0/1      | 0/1       | 0/3      | 3/3       | 0/1         | 0/1   |
| 31        | 3/3      | 3/3   | 0/1      | 0/1       | 3/3      | 3/3       | 0/1         | 0/1   |
| 33        | 3/3      | 3/3   | 0/1      | 0/1       | 3/3      | 3/3       | 0/1         | 0/1   |
| 35        | 3/3      | 3/3   | 0/1      | 0/1       | 3/3      | 3/3       | 0/1         | 0/1   |
| 37        | 3/3      | 3/3   | 0/1      | 0/1       | 3/3      | 3/3       | 0/1         | 0/1   |
| 39        | 3/3      | 3/3   | 0/1      | 0/1       | 3/3      | 3/3       | 0/1         | 0/1   |
| 40        | 3/3      | 3/3   | 0/1      | 0/1       | 3/3      | 3/3       | 0/1         | 0/1   |
| 42        | 3/3      | 3/3   | 0/1      | 0/1       | 3/3      | 3/3       | 0/1         | 0/1   |
| 43        | 3/3      | 3/3   | 0/1      | 0/1       | 3/3      | 3/3       | 0/1         | 0/1   |
| 44        | 1/3      | 0/1   | 0/1      | 0/1       | 2/3      | 2/3       | 0/1         | 0/1   |
|           |          |       |          |           |          |           | 4/29/2014   | *PATH |

## End Point Analysis via LFS Detection

Detection of hapten-labeled amplicons via LFS with (Ustar: BioHelix, Quidel, TwistDx, and other comm. groups)

Detection of amplicon via hapten-labeled probes targeting single stranded target. SAMBA.





Lee et al., JID, 2010; 201(S1)



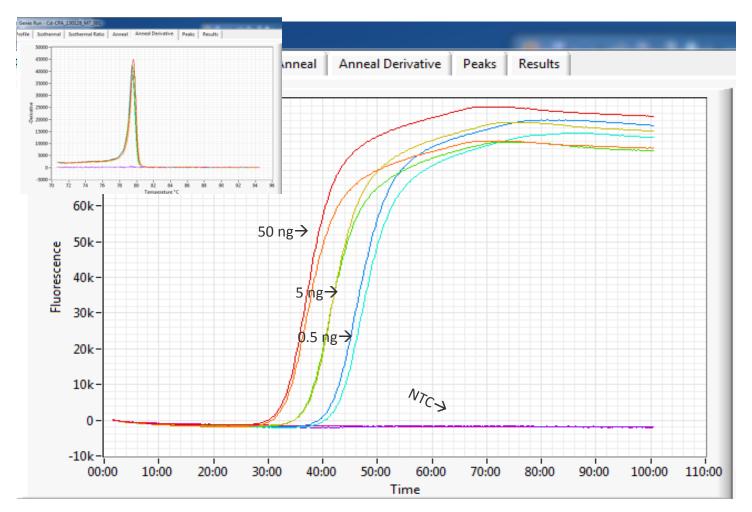
### **Detection in Real Time**

Real-time detection via fluorescence/bioluminescence

CPA, HDA, LAMP, GEAR, NEAR, PCR, and RPA amplicon detection probe-based and intercalatory dyes

Alere, Epistem, Lumora, MolBio, Optigene, Qiagen (ESE), and others

Battery powered, small, result scoring, on-board data storage

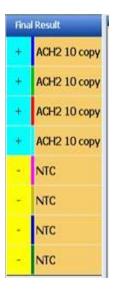





\*PATH

## **Optigene Genie II**

Single channel fluorescent analysis, reverse melt curve analysis confirms amplicon




Page 29

\*PATH

## **Automated Scoring of Results**

Fast followers can interpretate data and give results via simple user interface



| <ol> <li>Result</li> </ol> | epistem                    |  |  |  |
|----------------------------|----------------------------|--|--|--|
| Test                       | Result                     |  |  |  |
| MTB / RIF                  | UNDETECTED<br>OK           |  |  |  |
| Date<br>01 FEB 12, 10:03   | Cartridge # 1234567890-ABC |  |  |  |
| Hold to reset              |                            |  |  |  |
| <ol> <li>Result</li> </ol> | epistem                    |  |  |  |
| Test                       | Result                     |  |  |  |
| MTB / RIF                  | DETECTED<br>RESISTANT      |  |  |  |
| Date<br>01 FEB 12, 10:03   | Cartridge # 1234567890-ABC |  |  |  |
|                            | d to reset                 |  |  |  |

| ŶŨ                        | 23:10                             | ÷ŏ                       | 23:                    |
|---------------------------|-----------------------------------|--------------------------|------------------------|
| Truenat <sup>TM</sup> MTB |                                   | ruenat <sup>TM</sup> MTB | 1                      |
| Center                    | molbio                            | Center                   | molbio                 |
| Date Friday 24 A          | ugust 2012 08:40:16               | Date Friday 24           | August 2012 11:14:28   |
| Operator                  | Satheesh                          | Dperator                 | Satheesh               |
| Profile                   | MTB                               | Profile                  | MTB                    |
| Lot Number 12345          | Expiry Date 0912                  | lot Number 12345         | Expiry Date 0912       |
| Sample                    | Sputum                            | Sample                   | Sputum                 |
| Patient Details           |                                   | Patient Details          |                        |
| Name                      |                                   | Vame                     |                        |
| D                         | PN5063                            | D                        | PN5064                 |
| Age                       | Sex e                             | lge                      | Sex                    |
| Referred By<br>Result     |                                   | Referred By<br>esult     |                        |
| Control C, 24.5           | Test C, 22.67                     | Control C, 28.67         | Test C <sub>t</sub> ND |
| Run Status Valid          |                                   | lun Status Valid         |                        |
| MTB DET                   | ECTED 5.8x10 <sup>06</sup> (PuImi | ATB NO                   | T DETECTED             |
| Print SMS                 | Share Back                        | Print SMS                | Share Back             |

ESE Twista

#### **Epistem Genedrive**

#### MolBio Truelab



#### Summary

- 1. A wide variety of sample preparation methods are in use
- 2. Many 'new' amplification methods' have potential
- 3. Test performance can be improved via the evolution of core components
- 4. Innovative engineering approaches to reaction monitoring and co-integration
- 5. Integrated to varying degrees in current technology
- 6. Level of integration is a trade of with cost/# of tests/location





## PCR is Dead!



The history and perception...

Large, expensive, power heavy, complex, not robust, and needs PC

## Long Live PCR! The reality...after engineering and innovation



Page 33

## Acknowledgements

#### Thank you to:

- PATH colleagues
- Academic partners
- Industrial collaborators
- Dr Romesh Gautom





**%**РАТН