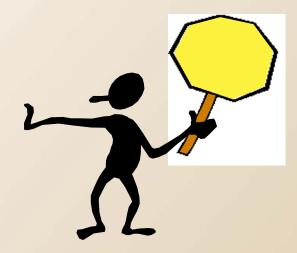


Matrix Complications in the Determination of Radium Isotopes in Hydraulic Fracturing Flowback Water from Marcellus Shale


> 2014 APHL Annual Meeting Little Rock, AR June 2014

Marinea Mehrhoff State Hygienic Laboratory (SHL) at The University of Iowa





Disclaimer



- The views and opinions expressed in this presentation are those of the authors and do not necessarily reflect the official policy or position of any agency.
- The mention of specific products are not an endorsement, but reference to products and the results used in this study.





# Topics

- Collaborative Effort
- Background Information
- Laboratory Testing
  - Sampling, sub-sampling
  - Method development issues
- Conclusions







# Collaboration

 SHL worked with University of Iowa (UI) Assistant Professor Michael Schultz and graduate student, Andrew Nelson from the UI Radiology, Radiation Oncology and Chemistry departments.





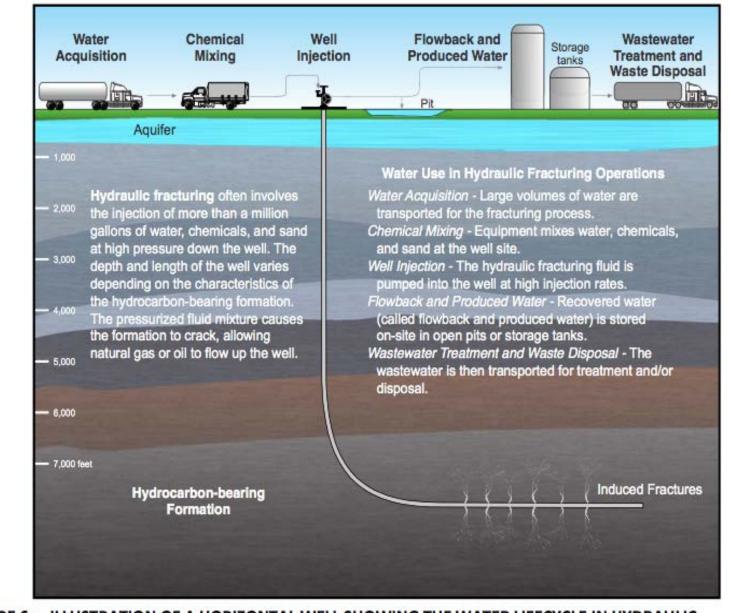



FIGURE 6a. ILLUSTRATION OF A HORIZONTAL WELL SHOWING THE WATER LIFECYCLE IN HYDRAULIC FRACTURING

Image



# Radium Activity in Marcellus Flowback Water

- USGS and PA DEP

   Flowback >600 Bq/L (or >16,000 pCi/L)
- Waste trucks set off radiation alarms
- Contamination downstream of Treatment plants
  - Warner *et al.* (2013)





Picture taken by Andrew Nelson from a fracking site in W. Virginia.

#### **Naturally Occurring Radioactive Material** (NORM) Fate and Transport Model Waste Discharge **Ra-228** Ra-226 Current Surface water Streambed ecosystem Ra-228 Ra-226 **Stream** Streambed worms, plants, mussels, clams **Pb-210** 1600 y Ra-226 **Rn-222** Po-210 **Sediments** Ac-228 Th-228 **Rn-220** 6 y **Ra-228** Ra-224

Would you expect Po-210 to be relatively soluble or to remain in the sediments?

How long would it take for Po-210 to grow into equilibrium with Pb-210 in the sediments?



# And Thus Our Study Begins...

On May 7, 2013 SHL received a 55 gallon drum of fracking flow back water (FBW) from the Marcella shale region of northern Pennsylvania.







# FBW sample issues

- Lack of control regarding the sampling container.
- Sample was not preserved, thus platting is of concern and how to preserve in this container?
- What is the solids content?
- Volatile compounds hazard?
- How to sub-sample?







### Now what do we do?







## **Inorganic Analyses**

#### (major analytes of concern)

| Analyte                        | Concentration mg/L |
|--------------------------------|--------------------|
| Chloride                       | 147,000            |
| Strontium                      | 36,000             |
| Sodium                         | 29,000             |
| Calcium                        | 13,000             |
| Barium Ba:Ra ≈ 10 <sup>9</sup> | 9,000              |
| Magnesium                      | 850                |
| Manganese                      | 3                  |
| Iron                           | 43                 |
| Total solids                   | 278,000            |
| Suspended solids               | 780                |





# Matrix problems

- Some groups use/propose
  - EPA 903.0 and 904.0
- Methods not validated
- Complicated Matrix:
  - Divalent cations
  - Suspended solids
- Unclear that precipitation or preconcentration techniques will work







# Hypothesis

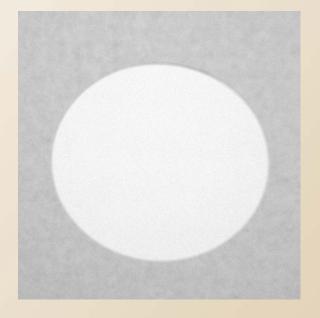
 High levels of barium in flowback water confound precipitation or preconcentration techniques

– Test:

- EPA 903.0 (BaSO<sub>4</sub> co-precipitation)
- MnO<sub>2</sub> pre-concentration
- Empore<sup>™</sup> Rad radium disks
- RAD7 portable radon emanation
- High purity germanium gamma spectroscopy (HPGe)






# EPA 903.0 (BaSO<sub>4</sub> co-precipitation)



Less than 1% recovery



## Empore<sup>™</sup> RAD Disks



### **10% Recovery**





# MnO<sub>2</sub> pre-concentration



THE UNIVERSITY OF LOWA

Less than 1% recovery in ppt.

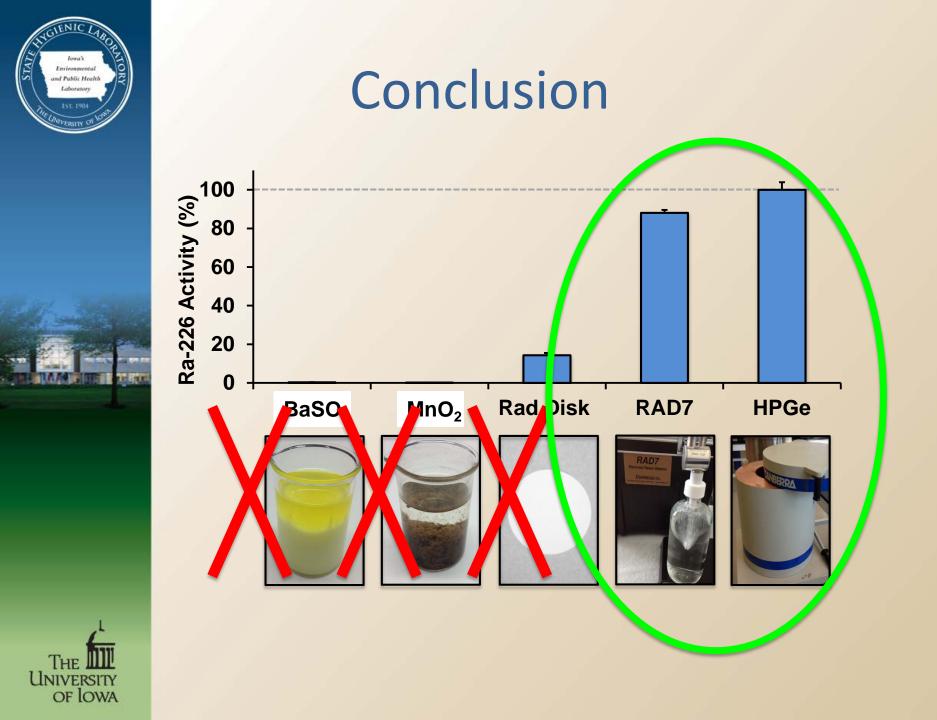


### **RAD7** portable radon emanation




#### 90% Recovery





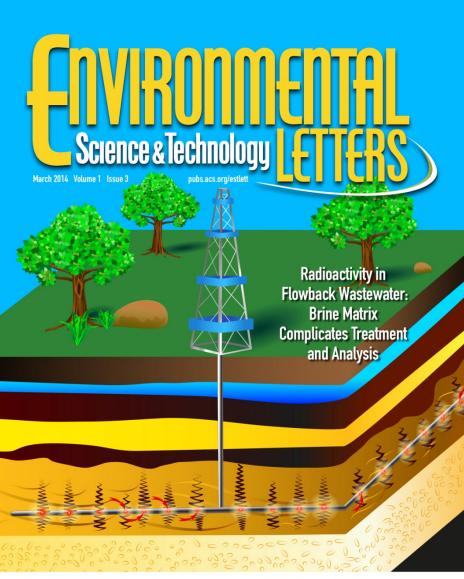

## **HPGe Gamma Spectroscopy**





#### 100% recovery Non-Destructive, Easy, Reliable





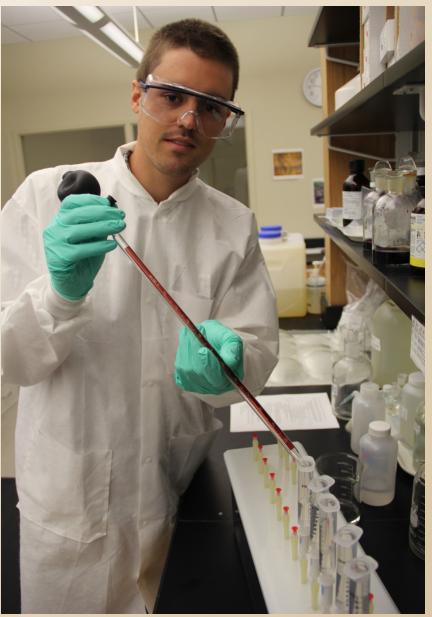

INVERSIT

OF LOWA

# Full Details: http://pubs/acs.org/loi/estlcu

### March 11,2014 Vol. 1 issue 3 pg 204-208








## Acknowledgement

### Collaboration

- Dr. Schultz
- Andrew Nelson
  - providing some of the slides
  - Publication
- Dustin May
   SHL analyst









# Questions? Thank you

Marinea Mehrhoff B.S. M.T. A.S.C.P. Radiochemistry Section Supervisor

Telephone: 319-335-4500 Email: <u>marinea-mehrhoff@uiowa.edu</u>

