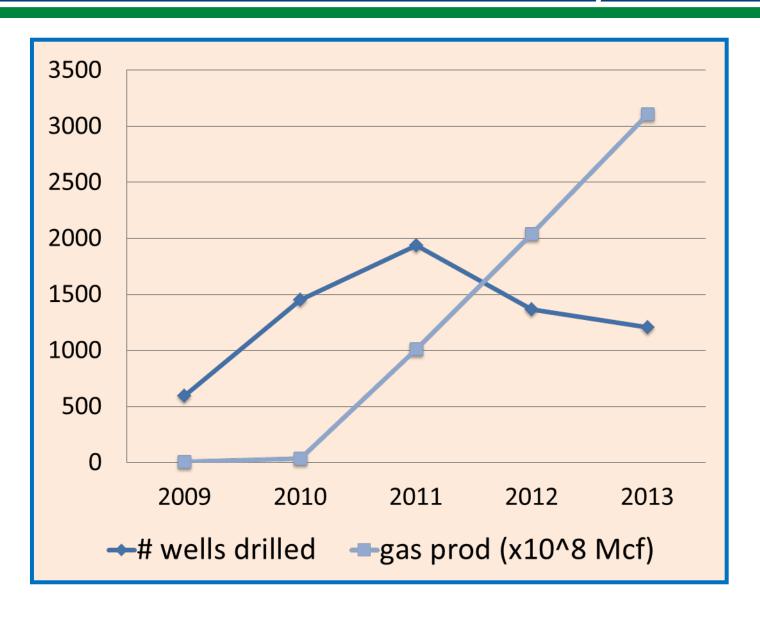


Bureau of Laboratories

Sample Preparation and Method Development for Analysis of Unique Environmental Matrices Associated with Gas Drilling Activities

Dr. Pamela J. Higgins

June 4, 2014
APHL National Meeting


Overview

1) Stages of gas drilling: associated solids and fluids

2) Preparation of TENORM sample matrices

3) Method/sample preparation adaptations for analysis of other gas drilling analytes

PA Marcellus Shale Activity Trends

What comes up......

The fluids and solids coming to the surface have been exposed to shale formation chemistry!

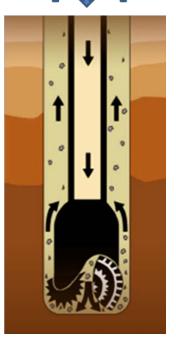
Marcellus Shale formation

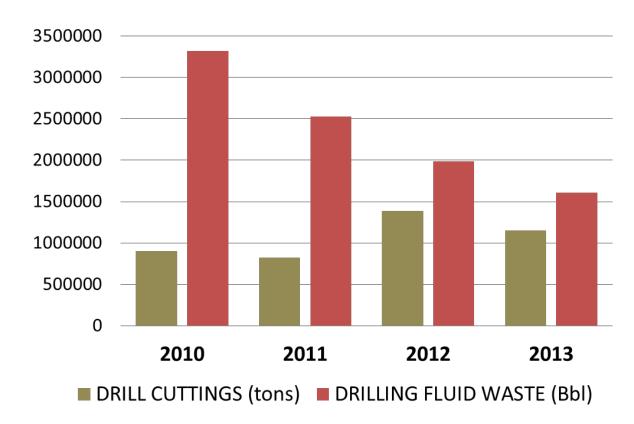
-rich in methane gas, little CO₂, N₂ or H₂S contaminants

-very high levels of solids (dissolved/suspended) and chloride ion

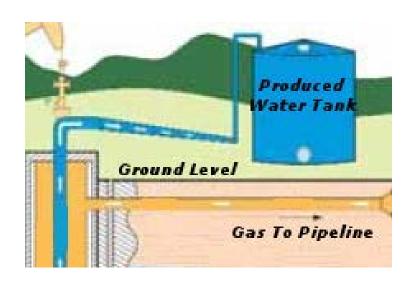
OTHERS:

- hydrocarbons
- divalent cations (Ca²⁺, Mg²⁺, Sr²⁺, Ba²⁺)
- heavy metals, Br-
- uranium, thorium, and decay products (TE/NORMs)

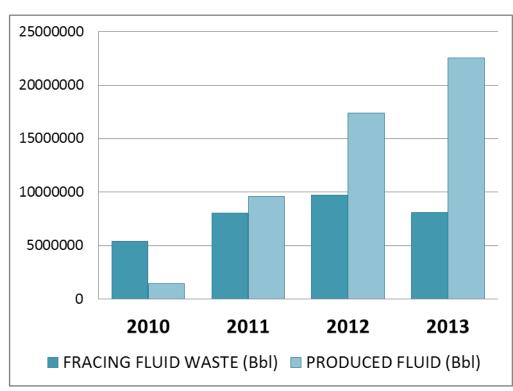

Well Drilling


Cuttings / fluid (sludge): more difficult to assess, leach non-uniform in nature

Drilling fluid


(mud)

Drill cuttings collect at the surface



Well Production

Produced fluids

- separated off from shale gas during collection

Flowback and produced fluids: high concentrations of solids/brine causes interference with sample preparation and analysis

Waste Perspective

2013 Totals	PA Gas Drilling Waste	PA Municipal Waste 21.5* (30 % imported)		
Waste solids (million tons/year)	1.3 (cuttings/sand)			
Waste fluids (million barrels)	7.7 per year	5 - 7 per DAY !		

^{*} Landfill/incinerator disposal

PA DEP TENORM Study

Year long comprehensive survey of TENORM concentration in gas drilling related samples across the state:

Well pads

Centralized WTF

Landfill

Publicly owned TP

-solids

-leachates

Zero Liquid TP

Drill Cuttings / Mud Analyses

Gamma Spectroscopy (on HPGe)

U-238, Th-232 and progeny (Ra-226/228)

K-40 (not in above decay chains)

-requires transfer to 0.5 L Marinelli

Raw sample

-sludge, sometimes oily

-non-homgeneous-rocks/roots

Drill Cuttings / Mud Preparation

1) Dry sample at 100 °C

2) Pulverize in coal grinder

- -easily transferrable and homogeneous
- -report results by actual mass transferred to the Marinelli

Well Pad / Treatment Plant Fluids

Gamma Spectroscopy

Pass sample through 0.45 micron filter

-high solids content can impair flow

Filtrate – Marinelli

Filter cake – Petri dish

Gross alpha/beta Spectroscopy

Routine environmental samples:

Evaporate ≈ 100 mL of sample onto shallow metal planchets

-careful application of small aliquots of sample to obtain a thin layer of solids (< 100 mg)

-allows low detection capability of these two radiation particles (500 min count on GPC)

Planchet Sample Problems

Thick oily and crusty residues from waste fluids:

Consistently negative values for gross alpha radiation!

Planchet Sample Solutions

Smaller volumes: 1 mL waste fluid + 10 mL nitric acid

Evaporate to 5 mL, planchet

Apply the heat: Drive off salt hydrates

Over flame

On hotplate



Total Metal Analyses

Samples clog thin aspirators

Samples in small cup container

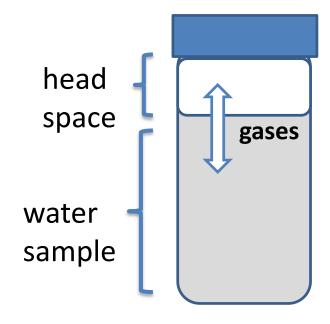
X-Ray Fluorescence

XRF Data for Fluid Blank Sample

Z	Symbol	Element	Concentration		_				
11	Na	Sodium	1564	ppm	39	Ϋ́	Yttrium	4.5	PP
12	Mg	Magnesium	156.4	ppm	40	Źr	Zirconium	1.5	ppm
13	Al	Aluminum	130.7	ppm	41	Nb		< 0.4	ppm
14	Si	Silicon	209.2	ppm	42	Мо	Niobium	< 1.0	ppm
15	Р	Phosphorus	12.7	ppm			Molybden	1.4	ppm
16	S	Sulfur	38.5	ppm	47	Ag	Silver	< 2.0	ppm
17	CI	Chlorine	240.9	ppm	48 50	Cd	Cadmium	< 2.0	ppm
19	K	Potassium	57.0	mag	50	Sn	Tin	< 3.0	ppm
20	Ca	Calcium	16.6	ppm	51	Sb	Antimony	< 3.0	ppm
22	Ti	Titanium	3.6	ppm	52	Te	Tellurium	< 3.0	ppm
23	V	Vanadium	0.7	ppm	53	İ	lodine	< 3.0	ppm
24	Cr	Chromium	2.3	ppm	55	Cs	Cesium	< 4.0	ppm_
25	Mn	Manganese	1.7	ppm	56	Ba	Barium	< 2.0	maa
26	Fe	Iron	24.5	ppm	57	La	Lanthanur	< 2.0	ppm
27	Co	Cobalt	< 2.6	ppm	58	Ce	Cerium	< 2.0	ppm
28	Ni	Nickel	2.3	ppm	72	Hf	Hafnium	2.1	ppm
29	Cu	Copper	0.8	ppm	73	Ta	Tantalum	12.7	ppm
30	Zn	Zinc	1.4	ppm	74	W	Tungsten	0.4	ppm
31	Ga	Gallium	0.2	ppm	80	Hg	Mercury	< 0.2	ppm
32	Ge	Germanium	< 0.5	ppm	81	Ti	Thallium	0.8	ppm
33	As	Arsenic	< 0.5	ppm	82	Pb	Lead	0.9	ppm
34	Se	Selenium	< 0.5	ppm	83	Bi	Bismuth	< 1.0	<u>ppm</u>
35	Br	Bromine	0.2	ppm	90	Th	Thorium	1.0	
37	Rb	Rubidium	0.4	ppm	92	υ"	Uranium	1.0	ppm
38	Sr	Strontium	0.3	ppm	02		Oranium	1.0	ppm

Organic Analyses of Drilling Associated Samples

1) Methane


-primarily tested for in well water

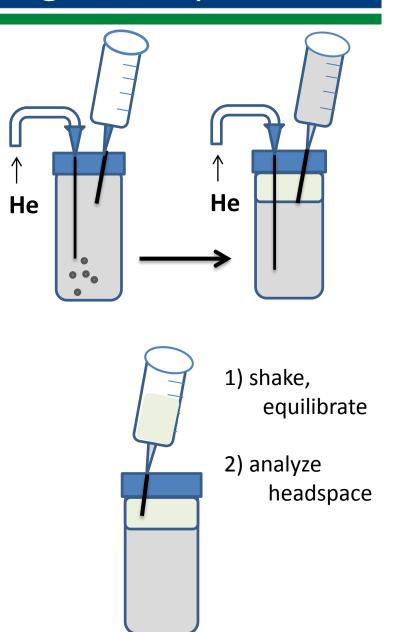
2) Semi/Volatile compounds

-primarily tested for in waste fluids

Headspace sampling

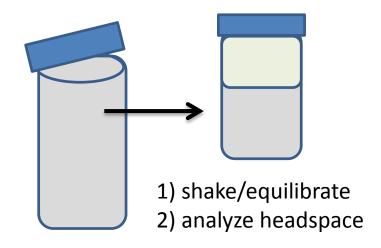
- -shake sample vial and heat to a constant temperature; allow the dissolved gases to equilibrate between headspace / water sample
- -obtain sample of the headspace gases
- -gas chromatography(GC) analysis

EPA RSKSOP-175


-create 10 % (v/v) headspace in unopened sample vial

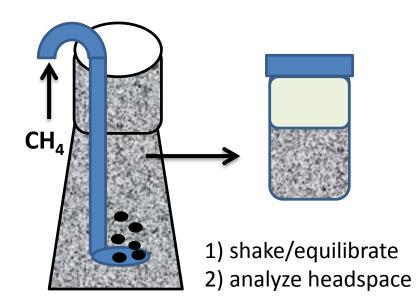
Quantitation:

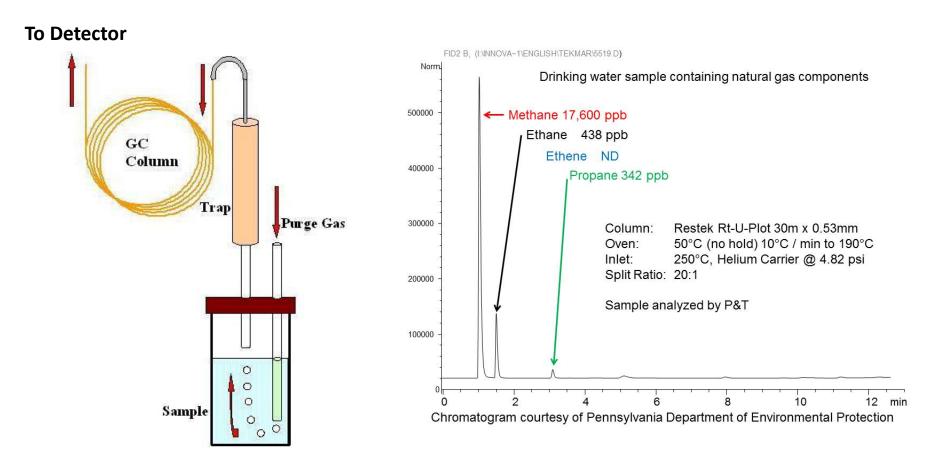
Manually inject gas standards


Determine [gas] in headspace

Indirect determination of the dissolved gas in water using ideal gas law calculations

PA-DEP 3686


-chill, then **open sample vial** for quick transfer to GC headspace vial

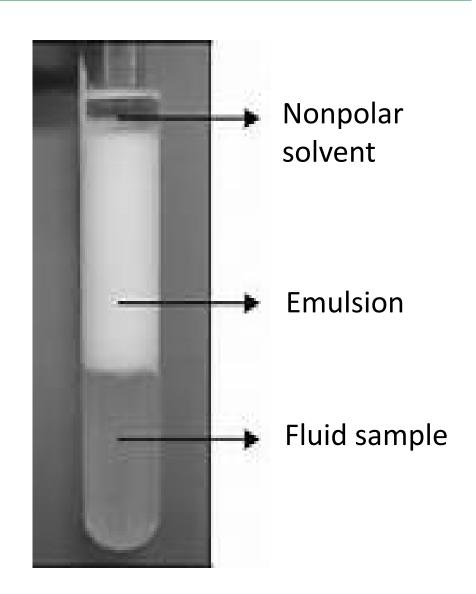

Quantitation:

Sparge methane into water to known saturation
-aliquot / dilute into vial

Direct determination of the dissolved methane in water correlated to [headspace gas]

Purge and Trap Sampling (PA-DEP 9243)

DEP method collaboration with Teledyne Tekmar -more common lab apparatus, results similar to headspace


Extraction of Semi/Volatile Compounds

Emulsion formation

during extraction of organic analytes using nonpolar solvents

Increased concentration of surfactants and stabilizers in waste and impoundment fluids

Summary

1) Matrices surfacing after shale contact during gas drilling (waste fluid/solids) are more complex than those introduced into the shale.

2) TENORM matrices from gas drilling activities required additional sample preparation steps before analysis.

3) Method development for monitoring gas drilling related analytes is an evolving process.

PA DEP Bureau of Laboratories (717)-346-7200

Martina Q. Mcgarvey, D.M.

Director

mmacgarvey@pa.gov

Pamela J. Higgins, Ph.D.

Special Assistant for Laboratory Operations

pahiggins@pa.gov