Next Generation Sequencing of CFTR from dried blood spots using the Ion Torrent PGM

Miyono Hendrix

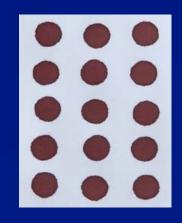
Newborn Screening & Genetic Testing Symposium October 27, 2014

National Center for Environmental Health

Division of Laboratory Sciences

Study Objectives

Evaluate Ion Torrent Next Gen Sequencing of CFTR on DBS DNA extracted from CDC's Newborn Screening Quality Assurance Program (NSQAP) PT samples

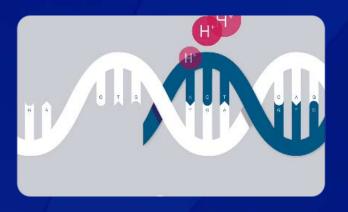

Compare traditional Sanger sequencing data with the highly parallel sequencing data from Ion Torrent

Determine if Ion Torrent Next Gen Sequencing assay can be used as a primary method with Sanger sequencing confirmation for PT specimen characterization

CF DNA Proficiency Testing Program

PT pilot program began in early 2007
CF Patient and Family PT Samples

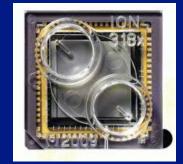
Collaborations with Phil Farrell, U of WI School of Med, Marty Kharrazi, CA Dept. of PH and Charlene Sacramento, Sequoia Foundation
 25 participants in 2007 and today 65 enrolled laboratories in 19 countries
 NSQAP Repository contains all of the ACMG 23 recommended mutations as well as 41 additional mutations



Advantages of the Ion Torrent Method

 Scalable sample throughput (different chip sizes)
 Multiplex up to 96 individuals on one chip
 Massively parallel sequencing to more easily evaluate small insertions or deletions (indels)
 Automated data analysis
 Potential for cost savings as multiplexing larger numbers of samples

Ion Torrent Technology Direct conversion of released H⁺ into digital information



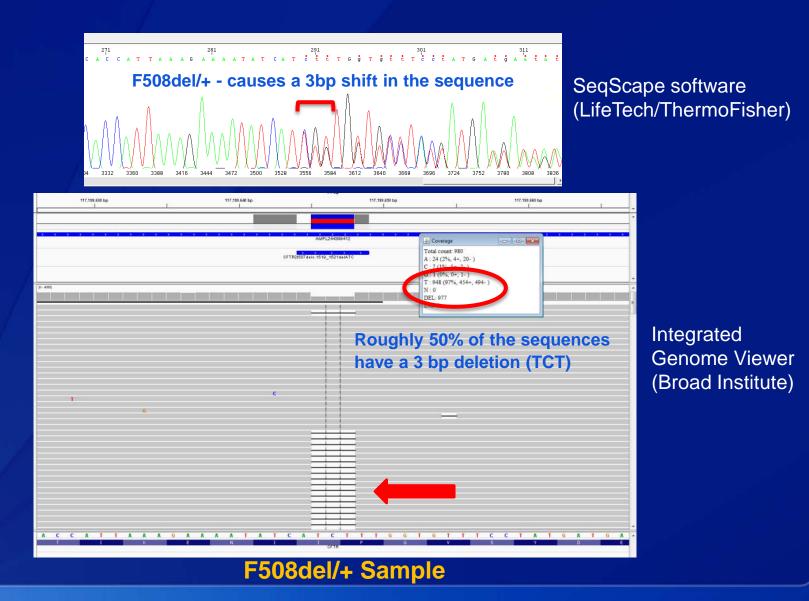
A H⁺ ion is released as each nucleotide is incorporated into the DNA strand causing a transient pH change

Ion Torrent semiconductor sequencing chip is able to detect this change in pH and convert it directly to base calls

Slide compliments of Life Technologies

Comparison of Sanger and Ion Torrent CFTR Sequencing

Sanger Sequencing


- Requires >220 ng of gDNA
- Single-plex
 - 42 PCR rxns/sample
 followed by 86 seq rxns
- Manual Analysis using
 SeqScape software
- ~ 5 weeks to sequence and analyze 32 samples

Ion Torrent Sequencing

- Requires 10 ng gDNA per pool*
- Multiplex
 - 8 96 library preps pooled for sequencing
- Automated Analysis (hotspot file contains 240 variants)
- <1 week to sequence and analyze 32 samples

*note ~ 5 ng/pool was used in this study

Calling Indels - Sanger vs. Ion Torrent

Automated Ion Torrent Mutation/Variant Calls

Library type: Targeted regions:	AmpliSeq							
	CFTRexon.20131001.designed							
Hotspot regions:		CFTR_hotspots_1126_2013						
Configuration:	Custom							
Download all barcode:	S: VCF.ZIP XLS.ZIP							
	ode Name Variants Hotspot Variants							
Barco	ode Name	Sample Name	Variants		Hotspot Variants			
Barco IonXpress_041	ode Name	Sample Name	Variants 9	8	Hotspot Variants			

Variant Calls by Allele

Chrom	-	Position 0	to 0	Allele Name			Gene ID		 Reg
Туре		 Allele C 	all Heterozygous (11), Ho	Var Freq 0	to	100	Total Cov ≥	0	

Position	Ref	Variant	Allele Call	Frequency	Quality 🔺	Variant Type	Allele Source	Allele Name G551D
chr7:117308413	С	т	Heterozygous	34.5 %	35.4	SNP	Hotspot	CDC45751251CT15751251CT
chr7:117227860	G	Α	Heterozygous	50.0 %	223.8	SNP	Hotspot	CFTR2G551Dc.1852GA
chr7:117199457	А	G	Heterozygous	48.9 %	743.5	SNP	Hotspot	CDC1525-81AGc.1393-81AG
chr7:117143718	А	G	Heterozygous	48.0 %	963.5	SNP	Novel	
chr7:117176569	GATT	-	Heterozygous	50.9 %	1174.3	DEL	Hotspot	CDCTTGA5or8TTGA5or8
chr7:117307108	G	Α	Heterozygous	47.3 %	1306.6	SNP	Hotspot	CDC4521GAc.4389GA
chr7:117267511	С	Α	Heterozygous	44.4 %	1571.8	SNP	Hotspot	CDC3601-65CAc.3469-65CA
chr7:117176738	С	т	Heterozygous	49.5 %	1665.9	SNP	Hotspot	CDC100111CTc.86911CT
chr7:117254527	Α	С	Heterozygous	51.7 %	2233.5	SNP	Hotspot	CDC3500-140AC- 2289-140AC
chr7:117199646	CTT	-	Heterozygous	51.8 %	2894.2	DEL	Hotspot	CDC.CFTR2F508delc.1521_1523delCTT
chr7:117188680	G	-	Homozygous	42.8 %	3596.5	DEL	Novel	
chr7:117229537	т	A	Homozygous	100.0 %	3933.0	SNP	Novel	- F508del
chr7:117235055	т	G	Heterozygous	48.3 %	4692.4	SNP	Hotspot	CDC2694TGc.2562TG
chr7:117199533	G	Α	Homozygous	100.0 %	12811.4	SNP	Hotspot	CDC.CFTR2M470Vc.1408AG

Hotspot file contains 240 unique variants

CFTR Mutation/Variation Comparison Ion Torrent vs. Sanger Data

	Mut/ Var* N=108	lon Torrent Precision	lon Torrent Sensitivity	Ion Torrent Technical Issues
Mutations	162 (57 unique)	100%	100%	2
Variants	539 (39 unique)	100%	99.3%	4 No-Calls

*excludes IVS8 variant - TGxTy

Conclusions

Ion Torrent is Faster than Sanger for CFTR

- <1 week vs 5 for sequencing 32 samples
- Automated data analysis significantly faster than manual

Ion Torrent Precision and Sensitivity is >99%

- Mutation Detection Precision 100%; Sensitivity 100%
- Variant Detection Precision 100%; Sensitivity 99.3%
- IVS8 (TGxTy) 5T can be distinguished from the 7T and 9T

Ion Torrent is Scalable from 8 – 96 samples

- 3 different density chip sizes allow flexibility
- Ion Torrent Can Save Money

Cost savings over Sanger when using a 316 or 318 chip at 500x
 Ion Torrent Can Potentially Replace Sanger

Sanger should be used for IVS8 characterization

Acknowledgements

•

- Thermo Fisher Scientific (Life Technology, Inc.)
 - Clarence Lee
 - Tim Harkins
 - Warren Tom
 - Shann-Ching Chen
 - Jingwei Ni
- University of WI School of Medicine
 - Phillip Farrell

CA Dept of Public Health

Marty Kharrazi

- Sequoia Foundation
 - Charlene Sacramento
- Cystic Fibrosis Center at Johns Hopkins
 - Peter J. Mogayzel, Jr
- Case Western Reserve University
 - Michael Konstan
- CDC
 - Suzanne Cordovado
 - Marie Earley
 - Carla Cuthbert

Thank you!

Newborn Screening

Saving Lives. Promoting Healthier Babies. Protecting our Future.

For more information please contact Centers for Disease Control and Prevention 1600 Clifton Road NE, Atlanta, GA 30333 Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348 E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

National Center for Environmental Health Division of Laboratory Sciences