

Looking for the Bad Bugs in Wisconsin

David Warshauer, PhD, D(ABMM) Deputy Director, Communicable Diseases Wisconsin State Laboratory of Hygiene

The <u>Wisconsin Clinical Laboratory Network</u> An "all-hazards" Network

WISCONSIN STATE LABORATORY OF HYGIENE

Role of Clinical Laboratories

Submission of isolates

- Voluntary
- Submission of AST results
- Reporting to public health

http://www.gru.edu/alliedhealth/mlirs/images/ cls-program.jpg

Wisconsin Antimicrobial Resistance Surveillance

NARMS

- Salmonella
- E. coli O157
- Shigella
- Listeria
- Vibrio

• WSLH

- Salmonella
- S. pneumoniae
- Milwaukee City Lab/GISP
 - Neisseria gonorrhoeae
- State Antibiogram
 - Clinical Lab Data

Streptococcus Pneumoniae Susceptibilities 2010-2014 (Non-Meningitis Breakpoints)

Salmonella Antibiotic Resistance Surveillance

Wisconsin Surveillance

Non-typhoidal *Salmonella* isolates tested for antibiotic susceptibility at WSLH, 2003-2012

	Number of isolates tested by year									
Serotype	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Enteritidis	128	151	245	8	8	11	5	11	7	9
Typhimurium	134	181	192	161	173	136	96	115	88	106
Newport	106	81	82	66	60	54	49	53	56	53
Heidelberg	14	19	33	16	24	33	9	11	16	14
l 4,[5],12:i:-	0	0	34	42	86	35	16	28	34	52
Other	310	400	341	341	384	323	295	334	340	357
All										
serotypes	692	832	927	634	735	592	470	552	541	591

Findings

Number and percent of all non-typhoidal *Salmonella* isolates from Wisconsin and U.S. that are resistant to individual antibiotics, from all years (2003-2012) combined

	Wiscons	in (N=6566)	U.S. (N		
Antibiotic	n	%	n	%	p-value
Gentamicin	194	3.0%	336	1.6%	<0.05
Kanamycin	360	5.5%	529	2.5%	<0.05
Streptomycin	2046	31.2%	2234	10.3%	<0.05
Amoxicillin-clavulanic acid	780	11.9%	713	3.3%	<0.05
Ceftriaxone	414	6.3%	690	3.2%	<0.05
Ampicillin	1071	16.3%	2236	10.4%	<0.05
Ciprofloxacin	12	0.2%	46	0.2%	0.32
Nalidixic Acid	172	2.6%	456	2.1%	<0.05
Cefoxitin	524	8.0%	669	3.1%	<0.05
Sulfisoxazole	1521	23.2%	2369	11.0%	<0.05
Trimethoprim-sulfamethoxazole	159	2.4%	341	1.6%	<0.05
Chloramphenicol	763	11.6%	1361	6.3%	<0.05
Tetracycline	1348	20.5%	2727	12.6%	<0.05

Findings

Trends in resistance to combinations of antibiotics

Comparison of ACSSuT resistance rates by county over time

Observations

Resistance rates to nearly all tested antibiotics in WI and U.S. have decreased over the studied time period

WI isolates are generally more resistant than national averages

CRE

Hospital-Based Surveillance in Wisconsin

- Reporting became mandatory during Dec 2011
- Hospital inpatient-based
- Requires use of the National Healthcare Safety Network (NHSN) for reporting
- Purposes

16

- Identify areas of high CRE prevalence
- Identify "high risk" facilities
- Assess healthcare-associated transmission

Surveillance in Wisconsin N = 137 hospitals

CRE

Hospitals required to report cases of CRE among inpatients

- 71 acute care
- 58 critical access
- 2 children's
- 6 long-term acute care

CRE Surveillance in Wisconsin

2014 NHSN definition

Any *E. coli or Klebsiella* spp. non-susceptible to

imipenem, meropenem, or doripenem, by standard susceptibility testing methods

or by a positive result for any method FDA-approved for carbapenemase detection from specific specimen sources. Includes clinical isolates from hospital inpatients.

Wisconsin 2014 Hospital-based CRE Data

Measure	n= 26 patients
Proportion of males	13/26 (50%)
Median age (range), years	65 (32–94)
Carbapenemase (KPC) positive	10/26 (38%)
Specimen source	n= 38 specimens
Urine	23 (60%)
Blood, other sterile sites	7 (18%)
Other (sputum, wound, SST)	5 (13%)
Klebsiella spp.	30 (79%)
Hospital onset (specimen collected on or after day 4 of admission)	15 (39%)

19

CRE Wisconsin 2014 Hospital-based CRE Data

Findings:

The southeastern public health region has a relatively high prevalence of CRE.

- One "high risk" facility has been identified.
- At least three probable incidents of healthcareassociated transmission have been identified.

Laboratory-Based Surviellance

Isolate Criteria for CRE Surveillance

- Enterobacteriaceae nonsusceptible to carbapenems
 - Imipenem, Meropenem, doripenem, or ertapenem
 - Excluding Proteus spp., Providencia spp., and Morganella morganii

TYPES OF CARBAPENEMASES

Enzyme Type	Ambler Class	Activity Spectrum	Organism(s)
KPC (1-10) (plasmid)	A	All β-lactams	Enterobacteriaceae Ps. aeruginosa
SME <u>S</u> . <u>m</u> arcescens <u>e</u> nzyme	A	Carbapenems and aztreonam, but not 3 rd /4 th Gen cephalosporins	S. marcescens, not plasmid Associated.
NMC – A, IMI MNC = <u>N</u> ot <u>m</u> etallo <u>c</u> arbapenemase IMI = IMI hydrolyzing B-lactamase	A	Same as for SME	Enterobacter spp.
GES GES= <u>G</u> uiana <u>e</u> xtended <u>s</u> pectrum (plasmid)	A	Imipenem and 3rd/4th cephalosporins	<i>Ps. Aeruginosa</i> and Enterobacteriaceae
IMI, VIM, NDM-1 VIM = Verona Integron encoded MBL) NDM-1 = New Delhi metallo β lactamase	B (metallo-β- lactamases)	All β-lactams; can test susceptible to aztreonam (NDM-1 variable AZT resistance)	<i>Pseudomonas</i> spp. <i>Acinetobacter</i> spp. Enterobacteriaceae
OXA (Oxacillin hydrolyzing)	D	Weakly active against carbapenems	<i>A. baumanii</i> , <i>P. Aeruginosa</i> , and rare Enterobacteriaceae

Pediatr Infect Dis J. 2010;29(1):68-70.

January 2010 to July 2014 CRE Surveillance

- Of 316 isolates tested for KPC, 84 positive (27%)
 - Most cases sporadic, but clusters were detected by PFGE and epidemiological linkage
- Of 196 isolates tested for NDM-1, 6 were positive (3%)
 - 5 cases were part of tightly linked epidemiological cluster
 - Index case had medical treatment on Indian subcontinent

January 2010 to July 2014 CRE Surveillance Positive for KPC

CRE Laboratory Surveilance

Conclusion

- Increasing antimicrobial resistance requires enhanced surveillance
- Antimicrobial resistance surveillance requires a strong clinical laboratory network
- Surveillance must include many partners: state and local public health, healthcare facilities, infection preventionists, and clinicians
- Surveillance requires funding

Acknowledgements

Gwen Borlaug, WDPH Sam Keepman, MPH Student The Laboratories of the WCLN The Bacteriology Unit, WSLH Kristin Gundlach Sara Wagner **Juliann Whirry** Alicia Jaedike Tim Monson Mike Rauch Ann Valley **The Data Crunchers Barb Rosenthal** Mary Wedig

Thank You

