The Exposome Why does this matter for Public Health?

Dr. Christopher J. Portier APHL Annual Meeting Indianapolis, May, 2015

What is "Exposure"?

- The **epidemiologist'**s view : something a person can tell you (location, diet, behavior, lifestyle, etc.)
 - Indirect , categorical surrogate for a predictor of disease risk
- The **molecular epidemiologist'**s view: something (biomarker) measured inside a person
 - Relates directly or indirectly to internal dose
- Exposure scientist's view : something measured or predicted outside a person
 - External level(s) across media (air, water, dermal contact, etc.)

Exposure is Dynamic

- Levels vary
 - Within and between persons and across populations
 - Internal and external doses
 - 10-fold to 10,000-fold, depending upon the context
- Variability makes it impossible to accurately predict exposure levels without empiric data
 - Need to measure something repeatedly!

Risk factors for exposures that contribute to chronic-disease mortality Rappaport et al., EHP, 2014

Small molecules and metals in human blood Rappaport et al., EHP, 2014

Blood concentration (µM)

Cumulative percent

What is the "Exposome"?

- "At its most complete, the exposome encompasses life-course environmental exposures (including lifestyle factors) from the prenatal period onwards" Chris Wild, Cancer Epidemiology Biomarkers 2005
- A comprehensive measurement of all exposure events (exogenous and endogenous) from conception to death

Challenges in Characterizing the Exposome

- Scale and complexity
 - Lifecourse environmental exposures
 - Lifestyle, nutrition, occupation etc.
 - Endogenous events at different target sites within the body
- Dynamic
 - The "exposome" changes over time (unlike genome)
 - Critical lifestage windows

Partial characterization is beneficial !

Advances in Exposure Assessment

- Biomonitoring
- Biomarkers
 - "omics" revolution
- Personal and environmental monitoring
 - Cheap sensors
 - Crowd-sourcing
- Increasingly sophisticated questionnaires
 - Social media

Partially «unbiased» approaches (some selection inevitably necessary)

Selective approach

approach

patient cohort

healthy control cohort

questionnaire-based EWAS, evaluation of socio-demographic factors (e.g. breastfeeding)

- "unbiased" approach
- Retrospective analysis possible
- Factors before onset of disease "accessible"
- Relatively cheap
- Large sample possible
- disadvantages F

advantages

- Recall bias
- No causative relationships

"-omics" EWAS, evaluation of blood/tissue/ exhalation air levels of potential chemicals and factors in patients and control cohorts

- "unbiased" approach
- quantitative measurement
- definite factors
- Some causation possible, especially for pollution factors
- Selection bias
- Expensive
- Only possible after onset of disease
- Limited time points

Single factor studies, animal models and selective experiments

- Hypothesis driven
- Causative relationship can be established
- Animal models possible
- Interventions and therapies easier
- Selection bias
- Low number of factors accessible

Rogler et al, Inflamm Bowel Dis, 2015

National Biomonitoring Program

National Biomonitoring Program targets both the general population and special groups

General population

- National Exposure Report (NHANES measurements)
- National Children's Study

Higher exposed or vulnerable groups

Higher or potentially higher exposed groups

Newborns

Women of childbearing age

Elderly

• 50-75 studies each year

PAHs and Obesity

Table 2. Multivariate linear regression β coefficient (95% CI)^{*a*} association between BMI *z*-score, waist circumference, and quartile^{*b*} of Σ molPAHs, or Σ NAPHT.

	BMI z-score		Waist circumfere	nce
Exposure	β coefficient (95% CI)	<i>p</i> -Value	β coefficient (95% CI)	<i>p</i> -Value
ALL (6–19 years)	<i>n</i> = 3,189		<i>n</i> = 3,189	
Σ molPAHs Q1	Referent		Referent	
Σ molPAHs Q2	0.18 (0.04, 0.32)	0.01	1.37 (–0.11, 2.85)	0.07
\sum molPAHs Q3	0.18 (0.01, 0.35)	0.04	1.34 (-0.28, 2.96)	0.10
∑molPAHs Q4	0.25 (0.08, 0.43)	0.01	2.24 (0.25, 4.23)	0.03
Σ NAPHT Q1	Referent		Referent	
Σ NAPHT Q2	0.22 (0.06, 0.39)	0.01	1.79 (0.15, 3.43)	0.03
Σ NAPHT Q3	0.24 (0.08, 0.40)	< 0.01	1.78 (0.24, 3.32)	0.02
Σ NAPHT Q4	0.31 (0.15,0.50)	< 0.01	2.68 (0.88, 4.49)	< 0.01

Pthalates and Obesity

	Outcome is In(Body Mass Index)							
Phthalate	nmol/min: β (SE), p-value	nmol/mL: β (SE), p-value	nmol/mL + crt: β (SE), p-value	nmol/g crt: β (SE), p-value	nmol/kg-day: β (SE), p-value			
DBP BBzP DEHP ^a DiNP DiBP DEP	0.022 (0.005)** 0.019 (0.005)** 0.019 (0.005)** 0.020 (0.004)*** 0.022 (0.005)** 0.013 (0.004)**	0.023 (0.004) ^{***} 0.021 (0.004) ^{***} 0.025 (0.004) ^{****} 0.023 (0.004) ^{****} 0.025 (0.005) ^{****} 0.016 (0.003) ^{**}	0.014 (0.006)* 0.011 (0.005)* 0.017 (0.005)* 0.017 (0.004)** 0.014 (0.006)* 0.010 (0.004)*	0.007 (0.006) 0.006 (0.006) 0.008 (0.006) 0.013 (0.004)* 0.003 (0.007) 0.005 (0.004)	0.040 (0.006) ^{****} 0.033 (0.006) ^{***} 0.033 (0.005) ^{***} 0.028 (0.004) ^{*****} 0.045 (0.007) ^{*****}			
DBP BBzP DEHP ^a DiNP DiBP DEP	Outcome is ln(Waist Circumf 0.011 (0.004)* 0.012 (0.004)** 0.012 (0.003)** 0.011 (0.003)** 0.012 (0.004)* 0.007 (0.003)*	erence) 0.014 (0.003)** 0.014 (0.003)** 0.017 (0.003)*** 0.014 (0.003)*** 0.016 (0.004)** 0.010 (0.003)**	0.007 (0.004) 0.008 (0.004)* 0.013 (0.004)** 0.011 (0.003)** 0.009 (0.005) 0.007 (0.003)*	0.001 (0.005) 0.004 (0.004) 0.006 (0.004) 0.008 (0.003)* 0.0006 (0.005) 0.003 (0.003)	0.024 (0.005)*** 0.023 (0.004)*** 0.024 (0.004)*** 0.018 (0.003)*** 0.029 (0.005)***			

^a Represents the molar sum of 4 DEHP metabolites (MEHP, MEHPP, MEOHP, MECPP).

p < 0.05.

 $p < 0.001 (1 \times 10^{-3}).$

 $p < 0.000001 (1 \times 10^{-6}).$ $p < 0.000000001 (1 \times 10^{-9}).$ ****

Christenson et al., Env Int, 2014

PFCs and Duration of Breast Feeding

Pinney, et al., Env Pollut, 2014

NHANES Exposures and Low Birth Weight

Patel et al., Repro Tox 2014

exposure category	number	sample sizes
bacteria	13	129-691
cotinine	1	754
diakyl	7	140-195
dioxins	6	106-163
furans	4	158-162
heavy metals	21	126-762
hydrocarbons	9	171-179
nutrients	32	164-762
polychlorinated biphenyls	23	126-193
perchlorate	3	198-254
pesticides	22	109-250
phenols	3	109
phthalates	11	114-242
phytoestrogens	6	233-245
polyflourochemicals	9	175
virus	11	151-161
volatile compounds	20	135-241

Factor
Urinary Bisphenol A
Serum Iron
Urinary Cesium
Urinary 1-hydroxypyrene
Serum Beta-cryptoxanthin

Environment-Wide Association Study for Type 2 Diabetes Patel et al., PLOS One, 2010

в

С

D

Correlation Interdependency Globes for 4 Environmental Exposures (Cotinine, Mercury, Cadmium, Trans - β -Carotene) in National Health and Nutrition Examination Survey (NHANES) Participants, 2003–2004 Patel et al, JAMA 2014

Each correlation interdependency globe includes 317 environmental exposures represented by the nodes around the periphery of the globe. Pairwise correlations are depicted by edges (lines) between the node of interest (arrowhead) and other

nodes. Correlations with absolute values exceeding 0.2 are shown (strongest 10%). The size of each node is proportional to the number of edges for a node, and the thickness of each edge indicates the magnitude of the correlation.

Endometrial Cancer and Food Nutrients in the European Prospective Investigation into Cancer and Nutrition (EPIC) study

Merritt et al. Cancer Epi, Biomarkers and Prevention, 2015

Comparison of EPIC and NHSII for Endometrial Cancer and Food Nutrients

Merritt et al. Cancer Epi, Biomarkers and Prevention, 2015

Study	HR (95% CI)	
Total fat (EPIC)	0.84 (0.71-0.99)	
Total fat (NHS/NHSII)	1.00 (0.87-1.15)	
Total fat (Overall)	0.92 (0.78-1.09)	
Monounsaturated fat (EPIC)	0.80 (0.65-0.97)	
Monounsaturated fat (NHS/NHSII)	0.95 (0.81-1.10)	
Monounsaturated fat (Overall)	0.88 (0.75-1.04)	
Carbohydrates (EPIC)	1.19 (1.01-1.41)	
Carbohydrates (NHS/NHSII)	1.01 (0.81-1.26)	
Carbohydrates (Overall)	1.11 (0.94-1.31)	
Phosphorus (EPIC)	0.82 (0.69-0.97)	
Phosphorus (NHS/NHSII)	1.05 (0.90-1.23)	
Phosphorus (Overall)	0.93 (0.73-1.19)	
Butter (EPIC)	1.23 (1.03-1.47)	
Butter (NHS/NHSII)	1.10 (0.97-1.24)	
Butter (Overall)	1.14 (1.02–1.27)	
Yogurt (EPIC)	1.15 (0.98-1.36)	
Yogurt (NHS/NHSII)	1.06 (0.93-1.22)	
Yogurt (Overall)	1.10 (0.99-1.22)	
Cheese (EPIC)	0.83 (0.69-1.01)	
Cheese (NHS/NHSII)	0.98 (0.82-1.16)	
Cheese (Overall)	0.91 (0.78-1.06)	
Potatoes (EPIC)	1.20 (0.99-1.46)	
Potatoes (NHS/NHSII)	0.94 (0.80-1.10)	
Potatoes (Overall)	1.05 (0.82–1.35)	
Coffee (EPIC)	0.81 (0.68–0.97)	
Coffee (NHS/NHSII)	0.82 (0.70-0.96)	
Coffee (Overall)	0.82 (0.73–0.92)	-

0.8

1

12 14

Biomonitoring

- Advantages
 - Direct measure of exposure
 - Can assess all sources of exposure (chem, drugs, nutrient, etc.)
 - Unbiased
- Disadvantages
 - Short- versus long-term exposures
 - Expensive
 - Identifying unique biomarkers

How does "omics" improve exposure assessment?

- Specific exposures, or categories of exposure can alter the expression of specific groups of genes, proteins or metabolites ("exposure fingerprint")?
 - How do such alterations relate to dose?
 - How stable are the alterations over time?
 - How do potential confounding factors affect the association between exposure and "omics" biomarkers
 - Can confounders confound "omics" biomarkers?

Identifying Important Disease Pathways

Relating Across Pathways

Metabolomics Profiling

Table 6

Metabolite pattern for liver enzyme induction in female rats. Red colour indicates statistical significance p < 0.05.

		2-A0	etylan luoren	nino- e	4-A(cetylan luoren	nino- e	Ar	oclor 1	254	Eth	ylbenz	ene	Pe	ntachlo Denzen	e	Phe	nobar sodi un	bital n	Vi	nclozo	lin
Metabolite	Direction	f7	f14	f28	f7	f14	f28	f7	f14	f28	f7	f14	f28	f7	f14	f28	f7	f14	f28	f7	f14	f28
Glycerol, lipid fraction	up	1,62	1,97	1,47	1,20	1,26	1,17	1,01	1,24	1,16	2,92	2,31	2,04	2,38	7,37	3,30	1,38	1,25	1,00	1,62	1,94	1,55
Palmitic acid	up	1,29	1,37	1,42	1,21	1,16	1,25	1,16	1,27	1,19	2,39	2,00	1,70	1,59	3,46	1,86	1,50	1,34	1,14	1,54	1,51	1,65
Linoleic acid	up	1,37	1,45	1,38	1,16	1,24	1,27	1,34	1,34	1,54	3,04	2,46	2,00	2,11	5,23	2,69	1,73	1,41	1,35	1,46	1,62	1,69
Stearic acid	up	1,16	1,19	1,15	1,24	1,23	1,25	1,34	1,54	1,91	1,73	1,92	1,51	1,30	1,87	1,65	1,48	1,41	1,23	1,75	1,99	2,07
Arachidonic acid	up	1,18	1,20	1,14	1,22	1,22	1,28	1,25	1,48	1,53	1,99	2,26	1,52	1,27	1,89	1,50	1,46	1,25	1,15	1,80	1,98	2,08
Cholesterol	up	1,19	1,32	1,01	1,31	1,25	1,38	1,43	1,45	1,53	2,13	2,39	1,82	1,23	1,64	1,62	1,40	1,26	1,12	1,70	1,92	2,08
Lignoceric acid	up	1,07	1,22	1,24	1,12	1,19	1,14	1,07	1,40	1,18	1,83	2,13	1,47	1,39	1,60	1,75	1,36	1,38	1,03	1,76	1,74	1,91
Eicosanoic acid	up	1,03	1,17	1,19	0,96	1,45	1,27	1,87	2,25	1,40	2,05	1,73	2,22	1,13	2,72	1,98	1,26	1,43	1,17	1,38	1,61	1,69
Behenic acid	up	0,97	1,20	1,39	1,15	1,11	1,18	1,57	1,27	1,24	1,75	2,11	2,00	1,30	1,66	1,47	1,75	1,47	1,19	1,49	1,73	1,84

Van Ravenzwaay et al., Mutat Res 2012

Tox21 data repository

Drug Discovery Today

Attene-Ramos et.al, Drug Disc. Today 18, 2013

AHR – Ah receptor AR – androgen receptor ARE - antioxidant response element Aromatase – aromatase inhibitors DT40 – cytotoxicity ER – estrogen receptor alpha FXR – farnasoid X receptor GH3 – thyroid receptor GR - glucocorticoid receptor HSE – heat shock response MITOTOX – mitochondrial membrane P53 – P53 signaling PPARD – PPAR delta PPARG – PPAR gamma SPEC - test for autofluoresence VDR - vitamin D receptor

Heat Map of Group 1 and Advisory Group Chemicals that are in Tox21-v2 Database

	S-Ethyl dpropythiocarbanane		
_	N /N-Climethylacetamide		
	Trichloroethylene		
	Allecter		
	BUSILIFAN		
	Cyclophosphamide monshydrate		
	1-Chico-3-nitobercaree		
-	-		
	Industri nitita -		
	Ncoine N		
1	NN,4-Timetylaniine		
	Alberg Toude		
	Chicpytics	n na an	
	Catayi _		
	2,46-Tichiosphenol		
1 1	METHORSALEN		
-	B-Methaypsonien		
	sedamine dhydrochloride	and the second sec	The second se
	2-Napitrylamine		
	Security -		
	Alizhanistia		

Helix Study Conceptul Framework Vrijheid et al., EHP, 2014

Helix Study Conceptual Framework Vrijheid et al., EHP, 2014

Helix Study – Outdoor Exposures Vrijheid et al., EHP, 2014

Table 2. Outdoor exposures.

Exposure group	Entire cohort (<i>n</i> = 32,000), for pre- and postnatal exposure periods	Subcohort (<i>n</i> = 1,200)	Child Panel Study (1 week in 2 seasons) (<i>n</i> = 150)	Pregnancy Panel Study (1 week in 2 seasons) (<i>n</i> = 150)
Ambient air pollutants	LUR model for NO ₂ , PM _{2.5} , PM ₁₀ , PM _{coarse} , PM _{2.5} absorbance, PM elemental analyses. Routine monitoring and OMI satellite data for temporal variability.	LUR model for NO ₂ , PM _{2.5} , PM ₁₀ , PM _{coarse} , PM _{2.5} absorbance, PM elemental analyses. Routine monitoring and OMI satellite data for temporal variability.	Inhalation rates and mobility (GPS) data from smartphones. Personal monitoring (24 hr) of PM _{2.5} (and black carbon.	Inhalation rates and mobility (GPS) data from smartphones. Personal monitoring (24 hr) of PM _{2.5} and black carbon.
Noise	Existing municipal noise maps to obtain spatial estimates. Address- based modeling of noise at the most and least exposed facade.	New questionnaires in children on bedroom position, noise perception, etc. Noise estimates based on maps and questions.	Time—activity and mobility (GPS) data from smartphones.	Time-activity and mobility (GPS) data from smartphones.
UV	Remote sensing (satellite) UV radiation maps.	New questionnaires in children on traveling, use of sunscreens, clothes, skin color. UV radiation estimates based on maps and questions.	Time–activity and mobility (GPS) data from smartphones and questionnaires. Personal monitoring using electronic UV dosimeters.	Time-activity and mobility (GPS) data from smartphones and questionnaires. Personal monitoring using electronic UV dosimeters.
Temperature	Remote sensing (satellite) temperature maps (from thermal infrared band) and data from local meteorological stations.	New questionnaires in children on heating and air conditioning. Temperature estimates based on maps and questions.	Time—activity and mobility (GPS) data from smartphones and questionnaires. Personal monitoring of temperature using electronic dosimeters.	Time-activity and mobility (GPS) data from smartphones and questionnaires. Personal monitoring of temperature using electronic dosimeters.
Built environment/ green spaces	Normalized Difference Vegetation Index from satellite. Building density, walkability score, accessibility, bike lanes, etc., derived from GIS data.	New questionnaires in children on use of green spaces, public spaces, active transportation.	Time—activity and mobility (GPS) data from smartphones and questionnaires.	Time—activity and mobility (GPS) data from smartphones and questionnaires.

Abbreviations: GIS, geographic information system; GPS, global positioning system; LUR, land use regression; NO₂, nitrogen dioxide; NO_X, nitrous oxides; OMI, ozone monitoring instrument; $PM_{2.5}$, particles $\leq 2.5 \mu m$ in size; $PM_{2.5}$ absorbance, measurement of the blackness of $PM_{2.5}$ filters—a proxy for elemental carbon, which is the dominant light-absorbing substance; PM_{coarse} , particles between 2.5 and 10 μm in size; PM_{10} , particles $\leq 10 \mu m$ in size.

Helix Study – Individual Exposures

Table 1. Individual exposures.

Exposure group	Entire cohorts (n = 32.000)	HELIX subcohort (n = 1,200)	Child Panel Study (1 week in 2 seasons) (<i>n</i> = 150)	Pregnancy Panel Study (1 week in 2 seasons) (<i>n</i> = 150)
PCB-153, DDE, HCB, PBDE-47		Biomarkers: in stored pregnancy blood samples ^a and in newly collected child blood samples.		
PFAS (PFOS, PFOA, PFBS, PFHxS, PFNA)	_	Biomarkers: in stored pregnancy blood samples ^a and in newly collected child blood samples. PBPK models for pregnancy and childhood.	_	
Metals (Hg, Pb, and TMS)	—	Biomarkers: in stored pregnancy samples ^a and in newly collected child samples: blood (Pb), urine (TMS), and hair (Hg).	—	_
Phthalates (13 metabolites)	—	Biomarkers: in stored pregnancy urine samples ^b and in newly collected child urine samples (last night and first morning void).	Biomarkers: in daily repeat urine samples. Daily data on diet, cosmetics. PBPK model for DEHP.	Biomarkers: in daily repeat urine samples. Daily data on diet, cosmetics. PBPK model for DEHP.
Phenols (BPA, parabens, TCS, BP3)		Biomarkers: in stored pregnancy urine samples ^b and in newly collected child urine samples (last night and first morning void).	Biomarkers: in daily repeat urine samples. Daily data on diet, cosmetics.	Biomarkers: in daily repeat urine samples over whole week. Daily data on diet, cosmetics.
OP pesticides	—	Biomarkers: in stored pregnancy urine samples ^b and in newly collected child urine samples (last night and first morning void).	Biomarkers: in daily repeat urine samples in two seasons. Daily data on diet and repellent use.	Biomarkers: in daily repeat urine samples in two seasons. Daily data on diet and repellent use.
Water DBPs	Estimates available from previous HiWATE project during and after pregnancy.	New questionnaire in children on water consumption and swimming combined with water company data.	Water consumption diaries.	Water consumption diaries.
Indoor air: BTEX, NO ₂ , PM _{2.5}	Existing questionnaire data on indoor sources during and after pregnancy.	New questionnaire in children on cooking, heating, cleaning, and ventilation.	Passive BTEX and NO ₂ sampling in the home. Active PM _{2.5} sampling. Questionnaire on cooking, heating, cleaning, and ventilation.	Passive BTEX and NO ₂ sampling in the home. Active PM _{2.5} sampling. Questionnaire on cooking, heating, cleaning, and ventilation.
ETS	Existing questionnaire and cotinine data during and after pregnancy	New questionnaire in children. Biomarkers: cotinine measurement in newly collected child urine and/or bair samples	Questionnaire on ETS.	Questionnaire on ETS.

Abbreviations: BP3, benzophenone-3; BPA, bisphenol A; BTEX, benzene, toluene, ethylbenzene, xylene; DBPs, disinfection by-products; DDE, dichlorodiphenyldichloroethylene; DEHP, di(2-ethylhexyl) phthalate; ETS, environmental tobacco smoke; HCB, hexachlorobenzene; Hg, mercury; NO₂, nitrogen dioxide; OP, organophospate pesticides; Pb, lead; PBDE-47, polybrominated diphenyl ether–47; PCB-153, polychlorinated biphenyl–153; PFAS, perfluoroalkyl substances; PFBS, perfluorobutanesulfonic acid; PFHxS, perfluorohexane sulfonic acid; PFNA, perfluorononanoic acid; PFOA, perfluoroctanoic acid; PFOS, perfluoroctane sulfonic acid; TCS, triclosan; TMS, total metal spectrum. *a*Where measurements are available from previous studies, these will be used. *b*Pooling of \geq 2 urine samples when available.

Helix Study – Omics Analyses Vrijheid et al., EHP, 2014

Table 3. Omics analyses.^a

Omics technique	Entire cohort (<i>n</i> = 32,000)	Subcohort ($n = 1,200$ mother—child pairs)	Child Panel Study (1 week in 2 seasons) ($n = 150$) ^b
Metabolomics	—	Untargeted ¹ H NMR spectroscopy and semitargeted UPLC-MS analysis in urine; targeted analysis in serum (using Biocrates Absolute IDQ p180 Kit) in newly collected child samples.	Further analysis of daily urine samples and single serum sample at the end of each week (in winter and summer seasons) to evaluate sources of variation and short-term exposure–omics associations.
Proteomics	—	Targeted analysis in newly collected child plasma samples depending on results of analysis in the Child Panel Study.	Initial iTRAQ and MRM (or similar) analyses in plasma samples collected at end of each week (in winter and summer seasons) to evaluate sources of variation and short-term exposure—omics associations.
Transcriptomics	_	Next-generation sequencing (Ilumina Hiseq2000) or microarray analysis of both mRNAs and miRNAs in newly collected child whole blood samples. In addition, plasma will be collected to analyze miRNAs in the future.	Analysis of blood samples at the end of each week (in winter and summer seasons) to evaluate sources of variation and short-term exposure— omics associations. In addition, plasma will be collected to analyze miRNAs in the future.
DNA methylation	_	Infinium Human Methylation 450 BeadChip for genome-wide methylation analysis of DNA extracted from newly collected child whole blood samples.	Analysis of blood samples at the end of each week (in winter and summer seasons) to evaluate sources of variation and short-term exposure— omics associations.

Abbreviations: ¹H NMR, proton nuclear magnetic resonance; iTRAQ, isobaric tags for relative and absolute quantitation; MRM, mass spectrometry–based multiple reaction monitoring; miRNA, microRNA; mRNA, messengerRNA; UPLC-MS, ultra performance liquid chromatography–mass spectrometry.

^aDetails of the techniques are described in Supplemental Material, Detailed description of omics techniques to be used in HELIX, pp. 4–6. ^bThe Pregnancy Panel Study will collect biological samples similar to those of the Child Panel Study. Omics analyses are currently not foreseen in the pregnant women, but samples will be stored for future analysis, e.g., to evaluate whether specific omics findings from the children are replicated in the pregnant women.

"Omics"

- Advantages
 - Biomarkers of exposure and effect
 - Indirectly assess all sources of exposure (chem, drugs, nutrient, etc.)
 - Unbiased
- Disadvantages
 - Short- versus long-term exposures
 - Expensive
 - Clarity of interpretation

The Exposome

Vrijheid, BMJ, 2014

Silicone Wristbands

O'Connell et al., ES&T, 2014

Propeller Health Asthma/COPD Tracking

Apps and Feedback

Asthma Inhaler Tracking

Crowd-Source Sensors

Sensordrone gasses

WaterBot water quality

Safecast – Radiation Monitor

EDF and Google Mapping Methane

Sensor Revolution

- Advantages
 - Costs
 - External exposures can be measured over an extended timeframe
 - Crowd-sourcing
 - In a fixed network, greater density of coverage
 - As a personal monitor, direct measurement of individual contact with environment
 - As a mobile monitor, ability to map large areas, possibly with high quality instruments

Sensor Revolution

- Disadvantages
 - Limited number of exposures
 - Questionable reliability, accuracy, etc.
 - As a personal monitor, interpretation of actual exposure is difficult
 - As a mobile monitor, impossible to accurately correct for space-time variations

Systems Biology for the Individual

Interaction Network: Our Environment and Our Health

8:30 am – 10:00 am Concurrent Sessions

The Role of the Exposome in Predicting Disease Room 124

Moderator: Sanwat Chaudhuri, PhD, Utah Public Health Laboratory

The Exposome — A Systems Approach for Discovery in Environmental Health Yuxia Cui, PhD, National Institute of Environmental Health Sciences

The Exposome: Implications for Occupational Health D. Gayle DeBord, PhD, Centers for Disease Control and Prevention

Developing Non-targeted Measurement Methods to Characterize the Human Exposome Jon Sobus, PhD, U.S. Environmental Protection Agency