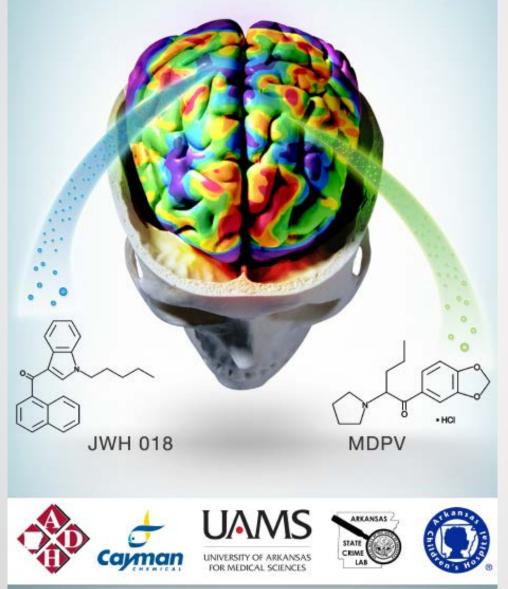
Validating a Human Test for Acetyl Fentanyl Using the LRN-C Platform

Jeffery H. Moran, PhD

Branch Chief

Arkansas Public Health Laboratory

Arkansas Department of Health



Disclaimer

- I am a Partner of PinPoint Testing, LLC.
 - UAMS BioVenture Company
 - Required for SBIR/STTR funding mechanisms
- Contents are solely the responsibility of myself and does not necessarily represent the official views of AR PHL, CDC, or FDA.

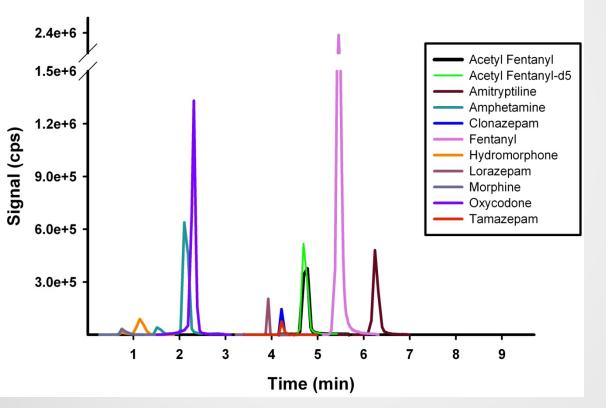
CENTER FOR DRUG DETECTION AND RESPONSE

- Founded in response to the emergence designer drugs
- Combines government, academic, clinical and private resources (ADH, ASCL, UAMS, ACH, PCC, Cayman Chemical, PinPoint Testing, LLC etc.)
- National, local advisory groups consisting of professional and community members (DEA, CDC, John W. Huffman, Nate Smith, Kermit Channell, Beth Coulson, etc.)
- Develop analytical capacity, maintains statewide surveillance and tracking, professional and community education

Center for Drug Detection and Response: Acetyl Fentanyl Timeline

ASCLD Meeting 5/8/13	CDDR Faculty & Advisors Meet to Prepare Response Toward Acetyl Fentanyl. Materials & Test Plan Set in Motion. 6/25/13	APHL Webcast 7/17/13	"Tox-Box" Development Begins	"Tox-Box" Final Method Validation Complete Mid-August	Transfer of Method Technology 8/31/13
Cayman Begins Synthesis of Acetyl Fentanyl Reference Standards (Std)	LRN Method Pilot Testing for Human Test Development of	Acetyl Fentanyl Acetyl Fentanyl D ₅ Acetyl Norfentanyl Acetyl Norfentanyl D ₅ (Analytical Std's Available)	7/31/13 Estimate Availab ISO Guide 34 Ce Reference Mater	ertified	

Final Method Published



pubs.acs.org/ac

Quantitative Measurement of Acetyl Fentanyl and Acetyl Norfentanyl in Human Urine by LC-MS/MS

Amy L. Patton,[†] Kathryn A. Seely,[†] Sharon Pulla,[‡] Nancy J. Rusch,[‡] Cindy L. Moran,[§] William E. Fantegrossi,[‡] Laura D. Knight,[∥] Jeanna M. Marraffa,[⊥] Paul D. Kennedy,[∇] Laura P. James,[#] Gregory W. Endres,[∇] and Jeffery H. Moran^{*,†,‡}

Acetyl Fentanyl Response: LC-MS/MS Development – LRN-C **Platform**

- Agilent 1200 ABSCIEX 4000 Q-Trap
- Allure PFPP Column
 - 50 x 2.1 x 5
- 14.5 minute method
 - 90% A to 10% A over 9 minutes
 - Hold for 3 minutes
 - 2.5 minute equilibration
- sSRM –IDA-EPI
 - Acetyl Fentanyl: $323 \rightarrow$ 188
 - ISTD: 328 → 188

SOP and Method Validation Plan

1	
Date: 06/26/13 SOP14-Opiate Page 1 of 31 Arkansas Department of Health Public Health Laboratory Environmental Chemistry Section Chemical Terrorism Laboratory	07/01/13 Page 1 of 16 SOP 14-Opiate VAL Arkansas Department of Health Public Health Laboratory Environmental Chemistry Section Chemical Terrorism Laboratory
for Acetyl Fentanyl and Metabolites In Urine and Blood by LC-MS/MS SOP14-Opiate	Standard Operating Procedure for Method Validation for Acetyl Fentanyl and Metabolites In Urine and Blood by LC-MS/MS SOP 14-Opiate VAL
June 26, 2013	July 1, 2013

SO Pla

Method Validation: Summary of Results

Method: Opiates in Urine

(AF: Acetyl Fentanyl ANF: Acetyl Norfentanyl)

Parameter				Result			
	ſ	AF	ANF				
Accuracy	QCL (%)	99.04	97.73				
	QCM (%)	98.57	98.81				
	QCH (%)	96.35	97.66				
			AF			ANF	
Precision		QCL (%CV)	QCM (%CV)	QCH (%CV)	QCL (%CV)	QCM (%CV)	QCH (%CV)
Frecision	Within-Run	7.52 🗸	5.00 🗸	4.26	3.84	3.77 🗸	7.85
	Between-Run	9.50 🗸	7.94 🗸	9.42 🗸	14.08	5.77	7.72
Analytical Sensitivity		AF	ANF			AF	ANF
(LOD and LOQ)	Lower Detection Limit	0.5	1.0		Lower Quantitation	1.06 /	1.62
(200 010 200)	(ng/mL)	0.5	1.0		Limit (ng/mL)	1.00 \$	1.02 0
Analytical Interferences	This method uses low re are observed with this m		m mass spectro	ometry; therefo	ore, it eliminates most ar	nalytical interf	erences. No inter
Analytical Interferences			m mass spectro	ometry; therefo	ore, it eliminates most ar	nalytical interf	erences. No inter
Analytical Interferences		nethod.		ometry; therefo	ore, it eliminates most ar	nalytical interf	erences. No inter
	are observed with this m		m mass spectro ANF 1.62	ometry; therefo	ore, it eliminates most ar		
Analytical Interferences Reportable Range		AF	ANF	ometry; therefo		is linear withir	n this range.
	are observed with this m Low (ng/mL)	AF 1.06	ANF 1.62 100 Uncertainty	ometry; therefo	• This method	is linear withir	n this range. ated LOQ.
	are observed with this m Low (ng/mL) High (ng/mL)	AF 1.06 100	ANF 1.62 100 Uncertainty Value		• This method • The low value	is linear withir e is the calcula	n this range. Ited LOQ. Uncertainty Value
	are observed with this m Low (ng/mL) High (ng/mL) QC Charts	AF 1.06 100	ANF 1.62 100 Uncertainty Value 1.5785		• This method • The low value SPE Car	is linear within e is the calcula tridges	n this range. Ited LOQ. Uncertainty Value 0.0250
Reportable Range	are observed with this m Low (ng/mL) High (ng/mL) QC Charts Acetyl Fentany	AF 1.06 100	ANF 1.62 100 Uncertainty Value 1.5785 0.0100		• This method • The low value SPE Car Sodium	is linear within e is the calcula tridges Acetate	n this range. Ited LOQ. Uncertainty Value 0.0250 0.0033
	are observed with this m Low (ng/mL) High (ng/mL) QC Charts Acetyl Fentany Acetyl Fentany	AF 1.06 100 100 1 Std. d5 Std.	ANF 1.62 100 Uncertainty Value 1.5785 0.0100 0.0100		This method The low value SPE Car Sodium Aceto	is linear within e is the calcula tridges Acetate nitrile	Uncertainty Value 0.0250 0.0033 0.0003
Reportable Range	are observed with this m Low (ng/mL) High (ng/mL) QC Charts Acetyl Fentanyl- Acetyl Fentanyl- Acetyl Norfentar	AF 1.06 100 100 1 Std. dS Std. myl Std.	ANF 1.62 100 Uncertainty Value 1.5785 0.0100 0.0100 0.0250		This method The low value SPE Car Sodium Aceto Formi	is linear withir e is the calcula tridges Acetate nitrile c Acid	Uncertainty Value 0.0250 0.0003 0.0003
Reportable Range	are observed with this m Low (ng/mL) High (ng/mL) OC Charts Acetyl Fentanyl- Acetyl Fentanyl- Acetyl Norfentany Acetyl Norfentany	AF 1.06 100 100 1 Std. d5 Std. hyl Std. 	ANF 1.62 100 Uncertainty Value 1.5785 0.0100 0.0100 0.0250 0.0250		This method The low value SPE Car Sodium Aceto Formi Ammoniur	is linear withir e is the calcula tridges Acetate nitrile c Acid m Formate	Uncertainty Value 0.0250 0.0003 0.0003 0.0003
Reportable Range	are observed with this m Low (ng/mL) High (ng/mL) QC Charts Acetyl Fentanyl- Acetyl Fentanyl- Acetyl Norfentar	AF 1.06 100 1 Std. d5 Std. nyl Std. -1-d5 Std. ance	ANF 1.62 100 Uncertainty Value 1.5785 0.0100 0.0100 0.0250		This method The low value SPE Car Sodium Aceto Formi	is linear withir e is the calcula tridges Acetate nitrile c Acid m Formate hanol	Uncertainty Value 0.0250 0.0033 0.0003

This validation study has been reviewed and the performance of all analytes measured in this method is considered acceptable for testing.

Analyst(s): Supervisor: Branch Chief: Laboratory Director: QA Officer:

have flitter anniz	
Casse Styler 9/2/2/13	
101-13	
10413	
Patchane 10-3-13	

If changes are made to this method, a new validation may be necessary.

*Operator and instrument uncertainty is measured within the method by evaluation of QC elements.

Introducing ToxBox[®]Products and Services

Everything you need to quickly run validated analysis on emerging drugs of abuse

- Analytical Run Packs
- Column and Extraction Cartridges
- Standard Operating Procedures
- Validation Plan
- On-site Consulting

Now available - Acetyl Fentanyl ToxBox®

Choose the solution that best fits your needs!

Acetyl Fentanyl ToxBox - Bronze	Acetyl Fentanyl ToxBox - Silver	Acetyl Fentanyl ToxBox - Gold	Acetyl Fentanyl ToxBox - Platinum
5 Analytical Run Packs	5 Analytical Run Packs	5 Analytical Run Packs	5 Analytical Run Packs
	1 HPLC Column	1 HPLC Column	1 HPLC Column
		500 SPE Cartridges	500 SPE Cartridges
		1 SOP	1 SOP
		1 Validation Plan	1 Validation Plan
			80 hrs. of on-site consulting and training from PinPoint Testing, LLC

ToxBox has been created through a partnership between PinPoint Testing and Cayman Chemical. Please contact PinPoint Testing today for more information on ToxBox products and services.

www.pinpointtesting.com 501.891.0070

www.caymanchem.com 800.364.9897

Continued Improvement and Sustainability

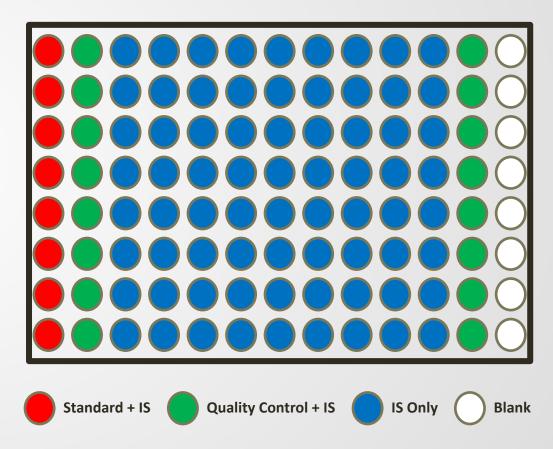
- Acetyl Fentanyl:
 - Waning Popularity
 - Too Focused (Analyte and Matrix)
 - Commercial markets outside of Public Health Laboratories did not grasp concept
- Next steps:
 - Drug Panel Expansion (1 method for urine/blood supported by LC-MS/MS and/or LC-TOF/MS)
 - Move to a fully customizable format
 - Implement 'Green Chemistry Concepts'
 - Miniaturize & reduce solvents
 - Use 'safer/environmentally friendly' solvents

Next Generation ToxBox[®]: Expanded Testing Menu

Opiates

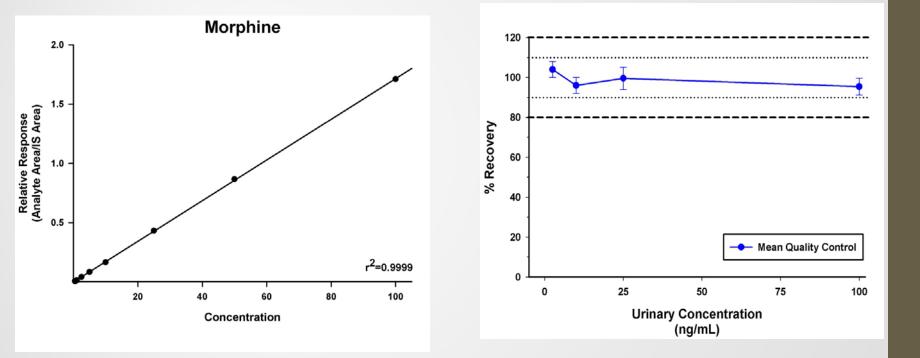
- Morphine & metabolite
- Acetyl fentanyl & metabolite
- Buprenorphine & metabolite
- Carisoprodol (Soma)
- Codeine
- Cyclobenzaprine (Flexeril)
- Dextromethorphan
- Dihydrocodeine
- Fentanyl & metabolite
- Heroin
- Hydrocodone
- Hydromorphone (Diluadid)
- Meperidine (Demerol) & metabolite
- Meprobamate
- Methadone & metabolite
- Morphine
- Naloxone
- Naltrexone
- Oxycodone
- Oxymorphone
- Propoxyphene & metabolite
- Sufentanil
- Tramadol (Ultram)

Benzodiazepines

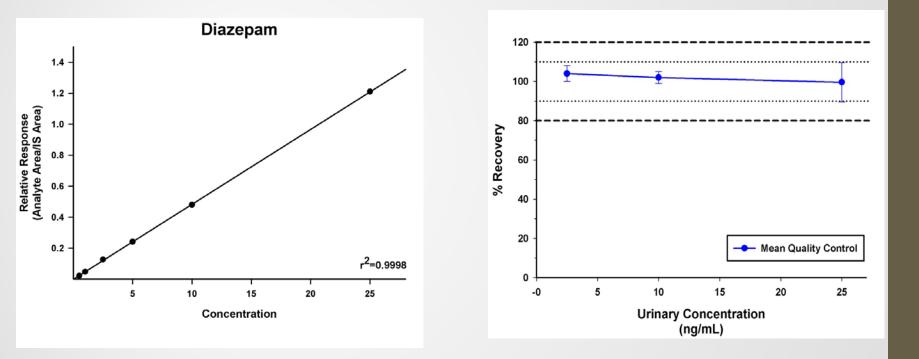

- Alprazolam (Zanax) & metabolite
- Clonazepam (Clonapin) & metabolite
- Diazepam (Valium) & metabolite
- Flunitrazepam (Rohypnol)
- Flurazepam (Dalmane)
- Lorazepam (Ativan)
- Midazolam (Versed)
- Nitrazepam (Nitrados)
- Oxazepam (Serepax)
- Phenazepam
- Temazepam (Restoril)

• Other Drugs of Abuse

- Amphetamine
- Cocaine & metabolite
- MDA
- MDEA
- MDMA
- Methamphetamine
- PCP
- Phentermine


Next Generation ToxBox[®]: ToxBox[®] Analytical Plates*

- 96-Well plate processing and high throughput capacity (1 plate/hr/person)
- Whole blood and urine
- Small volume (175 ul)
- Low level quantification
- Low cost
- No liquid waste
- Validated 55 total drugs of abuse (traditional and designer) in human urine and blood
- Completely customizable



*Patent Pending

Example Results: Opiates

Example Results: Benzodiazepines

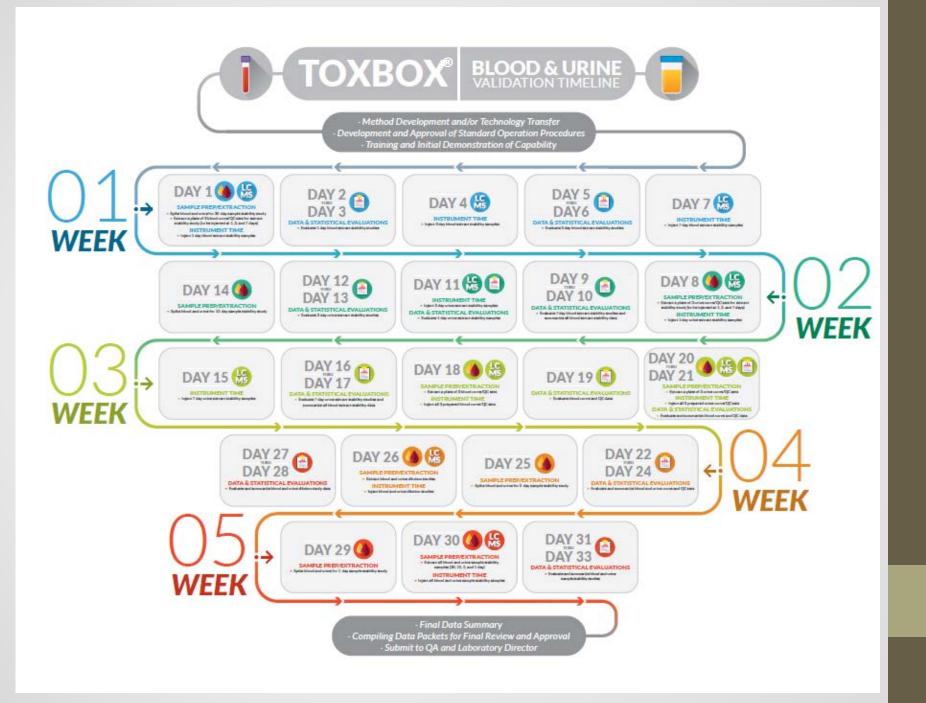
Resources for Clinical Laboratories

ISSUES IN BRIEF: LRN-C ANALYTICAL METHOD VALIDATION PLAN & TEMPLATE DECEMBER 2013

CLIA-Compliant Analytical Method Validation Plan and Template

FOR LRN-C LABORATORIES

TABLE OF CONTENTS


List of Acronyms	1
Introduction	2
LRN Clients and Responsibilities	2
Quality Requirements for Analytical Services	2
Analytical Method Performance Specifications	3
LRN-C Method Performance Specifications and Validation Plan	7
Acknowledgements	.12
APHL Resource	.12
Resource Links	.13

LIST OF ACRONYMS

EQA	External Quality Assessment
HPLC-MS/MS	High-Performance Liquid Chromatography Tandem Mass Spectrometry
IS	Internal Standard
LDT	Laboratory Developed Test(s)
LOD	Limit of Detection
LOQ	Limit of Quantitation
PK/PD	Pharmacokinetic/Pharmacodynamic modeling
TE,	Total Allowable Error
ULOL	Upper Limit of Linearity

Product from a National Workgroup

 Arkansas, Texas, New York, Utah, Wisconsin, Massachusetts, CMS, APHL, CDC

Questions?

Jeffery H. Moran, PhD Jeffery.moran@arkansas.gov

501-661-2826